This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143228 #15 Aug 28 2024 02:56:05 %S A143228 1,1,1,2,2,4,3,3,6,9,5,5,10,15,25,7,7,14,21,35,49,11,11,22,33,55,77, %T A143228 121,15,15,30,45,75,105,165,225,22,22,44,66,110,154,242,330,484,30,30, %U A143228 60,90,150,210,330,450,660,900,42,42,84,126,210,294,462,630,924,1260,1764 %N A143228 Triangle read by rows, T(n,k) = p(n) * p(k), where p(n) = the number of partitions of n, for 0 <= k <= n. %H A143228 G. C. Greubel, <a href="/A143228/b143228.txt">Rows n = 0..50 of the triangle, flattened</a> %F A143228 T(n, 0) = A000041(n) (left border). %F A143228 Sum_{k=0..n} T(n, k) = A143229(n) (row sums). %F A143228 Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A000041(n)*A087787(n). - _G. C. Greubel_, Aug 27 2024 %e A143228 First few rows of the triangle: %e A143228 1; %e A143228 1, 1; %e A143228 2, 2, 4; %e A143228 3, 3, 6, 9; %e A143228 5, 5, 10, 15, 25; %e A143228 7, 7, 14, 21, 35, 49; %e A143228 11, 11, 22, 33, 55, 77, 121; %e A143228 15, 15, 30, 45, 75, 105, 165, 225; %e A143228 ... %e A143228 T(7,4) = 75 = p(7) * p(4) = 15 * 5. %t A143228 Table[PartitionsP[n]*PartitionsP[k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Aug 27 2024 *) %o A143228 (Magma) %o A143228 A143228:= func< n,k | NumberOfPartitions(n)*NumberOfPartitions(k) >; %o A143228 [A143228(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 27 2024 %o A143228 (SageMath) %o A143228 def A143215(n,k): return number_of_partitions(n)*number_of_partitions(k) %o A143228 flatten([[A143215(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Aug 27 2024 %Y A143228 Cf. A000041, A143229 (row sums). %Y A143228 Main diagonal gives: A001255. %K A143228 nonn,tabl %O A143228 0,4 %A A143228 _Gary W. Adamson_, Jul 31 2008