This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143238 #14 Sep 12 2024 11:45:58 %S A143238 1,12,32,105,126,396,328,840,897,1566,1188,3556,1974,3960,4536,6820, %T A143238 4284,10803,5940,14238,11872,14652,10344,29460,16182,23688,24160, %U A143238 36960,20700,54864,25408,53991,43440,51786,48336,99918,43168,71760,70112,120780,58128,142080 %N A143238 a(n) = A000203(n) * A024916(n). %H A143238 G. C. Greubel, <a href="/A143238/b143238.txt">Table of n, a(n) for n = 1..10000</a> %F A143238 a(n) = A000203(n) * A024916(n). %F A143238 a(n) = Sum_{k=1..n} A143237(n, k). %e A143238 a(4) = 105 = A000203(4) * A024916(4) = 7 * 15. %e A143238 a(4) = 105 = sum of row 4 terms of triangle A143237: (7, + 21, + 28 + 49). %t A143238 sigma = Table[DivisorSigma[1, n], {n, 1, 50}]; sigma * Accumulate[sigma] (* _Amiram Eldar_, Feb 26 2020 *) %o A143238 (Python) %o A143238 from math import isqrt %o A143238 from sympy import divisor_sigma %o A143238 def A143238(n): return (-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)*divisor_sigma(n) # _Chai Wah Wu_, Oct 23 2023 %o A143238 (Magma) %o A143238 A143238:= func< n | DivisorSigma(1,n)*(&+[k*Floor(n/k): k in [1..n]]) >; %o A143238 [A143238(n): n in [1..100]]; // _G. C. Greubel_, Sep 12 2024 %o A143238 (SageMath) %o A143238 def A143238(n): return sigma(n,1)*sum(k*int(n//k) for k in range(1,n+1)) %o A143238 [A143238(n) for n in range(1,101)] # _G. C. Greubel_, Sep 12 2024 %Y A143238 Cf. A000203, A024916, A143237. %K A143238 nonn %O A143238 1,2 %A A143238 _Gary W. Adamson_, Aug 01 2008 %E A143238 More terms from _Amiram Eldar_, Feb 26 2020