A143256 Triangle read by rows, matrix multiplication A051731 * A128407 * A127648, 1<=k<=n.
1, 1, -2, 1, 0, -3, 1, -2, 0, 0, 1, 0, 0, 0, -5, 1, -2, -3, 0, 0, 6, 1, 0, 0, 0, 0, 0, -7, 1, -2, 0, 0, 0, 0, 0, 0, 1, 0, -3, 0, 0, 0, 0, 0, 0, 1, -2, 0, 0, -5, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 1, -2, -3, 0, 0, 6, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13, 1, -2, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 14
Offset: 1
Examples
First few rows of the triangle = 1; 1, -2; 1, 0, -3; 1, -2, 0, 0; 1, 0, 0, 0, -5; 1, -2, -3, 0, 0, 6; 1, 0, 0, 0, 0, 0, -7; ...
Links
- Robert Israel, Table of n, a(n) for n = 1..9870
Programs
-
Maple
seq(seq(`if`(i mod j = 0, j*numtheory:-mobius(j),0), j=1..i),i=1..20); # Robert Israel, Sep 07 2014
-
Mathematica
Table[If[Divisible[n, k], k MoebiusMu[k], 0], {n, 1, 14}, {k, 1, n}] (* Jean-François Alcover, Jun 19 2019 *)
-
Sage
A143256_row = lambda n: [k*moebius(k) if k.divides(n) else 0 for k in (1..n)] for n in (1..10): print(A143256_row(n)) # Peter Luschny, Jan 05 2018
Comments