This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143284 #25 Sep 08 2022 08:45:37 %S A143284 0,0,0,0,0,0,1,2,3,4,5,7,11,17,25,35,48,66,92,129,180,249,342,468,640, %T A143284 875,1195,1629,2216,3009,4080,5526,7477,10107,13649,18415,24823,33433, %U A143284 44995,60513,81330,109241,146644,196742,263813,353570,473640,634201 %N A143284 Number of binary words of length n containing at least one subword 100001 and no subwords 10^{i}1 with i<4. %H A143284 Vincenzo Librandi, <a href="/A143284/b143284.txt">Table of n, a(n) for n = 0..1000</a> %H A143284 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,1,0,-1,0,0,0,-1). %F A143284 G.f.: x^6/((x^5+x-1)*(x^6+x-1)). %F A143284 a(n) = A003520(n+4) - A005708(n+5). %F A143284 a(n) = 2*a(n-1)-a(n-2)+a(n-5)-a(n-7)-a(n-11). - _Vincenzo Librandi_, Jun 05 2013 %e A143284 a(7)=2 because 2 binary words of length 7 have at least one subword 100001 and no subwords 10^{i}1 with i<4: 0100001, 1000010. %p A143284 a:= n-> coeff(series(x^6/((x^5+x-1)*(x^6+x-1)), x, n+1), x, n): %p A143284 seq(a(n), n=0..60); %t A143284 CoefficientList[Series[x^6 / ((x^5 + x - 1) (x^6 + x - 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Jun 04 2013 *) %o A143284 (Magma) [n le 6 select 0 else n le 11 select n-6 else 2*Self(n-1)-Self(n-2) +Self(n-5)-Self(n-7)-Self(n-11): n in [1..60]]; // _Vincenzo Librandi_, Jun 05 2013 %Y A143284 Cf. A003520, A005708, 4th column of A143291. %K A143284 nonn,easy %O A143284 0,8 %A A143284 _Alois P. Heinz_, Aug 04 2008