This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143304 #12 Feb 16 2025 08:33:08 %S A143304 0,6,5,3,5,1,4,2,5,9,2,3,0,3,7,3,2,1,3,7,8,7,8,2,6,2,6,7,6,3,1,0,7,9, %T A143304 3,0,8,1,3,0,2,4,5,3,6,8,4,9,4,2,3,7,9,7,6,5,9,0,7,1,4,4,9,6,8,1,5,7, %U A143304 7,0,7,5,8,0,5,4,3,1,9,9,4,9,4,6,9,4,2,0,6,8,7,1,6,3,6,4,5,5,8,9,9,7,4,2,3 %N A143304 Decimal expansion of Norton's constant. %C A143304 The average number of divisions required by the Euclidean algorithm, for a pair of independently and uniformly chosen numbers in the range [1, N] is (12*log(2)/Pi^2) * log(N) + c + O(N^(e-1/6)), for any e>0, where c is this constant (Norton, 1990). - _Amiram Eldar_, Aug 27 2020 %D A143304 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 157. %H A143304 Graham H. Norton, <a href="https://doi.org/10.1016/S0747-7171(08)80036-3">On the asymptotic analysis of the Euclidean algorithm</a>, J. Symbolic Comput., Vol. 10 (1990), pp. 53-58. %H A143304 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NortonsConstant.html">Norton's Constant</a>. %F A143304 Equals -((Pi^2 - 6*log(2)*(-3 + 2*EulerGamma + log(2) + 24*log(Glaisher) - 2*log(Pi)))/Pi^2). %F A143304 Equals (12*log(2)/Pi^2) * (zeta'(2)/zeta(2) - 1/2) + A086237 - 1/2. - _Amiram Eldar_, Aug 27 2020 %e A143304 0.06535142592303732137... %t A143304 RealDigits[-((Pi^2 - 6*Log[2]*(24 * Log[Glaisher] + 2*EulerGamma + Log[2] - 2 * Log[Pi] - 3))/Pi^2), 10, 100][[1]] (* _Amiram Eldar_, Aug 27 2020 *) %Y A143304 Cf. A001620, A074962, A086237, A306016. %K A143304 nonn,cons %O A143304 0,2 %A A143304 _Eric W. Weisstein_, Aug 05 2008