This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143326 #34 Oct 04 2018 20:35:57 %S A143326 1,2,1,3,4,1,4,9,10,1,5,16,33,22,1,6,25,76,105,52,1,7,36,145,316,345, %T A143326 106,1,8,49,246,745,1336,1041,232,1,9,64,385,1506,3865,5356,3225,472, %U A143326 1,10,81,568,2737,9276,19345,21736,9705,976,1,11,100,801,4600,19537,55686 %N A143326 Table T(n,k) by antidiagonals. T(n,k) is the number of primitive (=aperiodic) k-ary words with length less than or equal to n (n,k >= 1). %C A143326 The coefficients of the polynomial of row n are given by the n-th row of triangle A134541; for example row 4 has polynomial -k+k^3+k^4. %H A143326 Alois P. Heinz, <a href="/A143326/b143326.txt">Antidiagonals n = 1..141, flattened</a> %H A143326 <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a> %F A143326 T(n,k) = Sum_{1<=j<=n} Sum_{d|j} k^d * mu(j/d). %F A143326 T(n,k) = Sum_{1<=j<=n} A143324(j,k). %F A143326 T(n,k) = A143327(n,k) * k. %e A143326 T(2,3) = 9, because there are 9 primitive words of length less than or equal to 2 over 3-letter alphabet {a,b,c}: a, b, c, ab, ac, ba, bc, ca, cb; note that the non-primitive words aa, bb and cc don't belong to the list; secondly note that the words in the list need not be Lyndon words, for example ba can be derived from ab by a cyclic rotation of the positions. %e A143326 Table begins: %e A143326 1, 2, 3, 4, 5, 6, 7, 8, ... %e A143326 1, 4, 9, 16, 25, 36, 49, 64, ... %e A143326 1, 10, 33, 76, 145, 246, 385, 568, ... %e A143326 1, 22, 105, 316, 745, 1506, 2737, 4600, ... %e A143326 1, 52, 345, 1336, 3865, 9276, 19537, 37360, ... %e A143326 1, 106, 1041, 5356, 19345, 55686, 136801, 298936, ... %e A143326 1, 232, 3225, 21736, 97465, 335616, 960337, 2396080, ... %e A143326 1, 472, 9705, 87016, 487465, 2013936, 6722737, 19169200, ... %e A143326 ... %e A143326 From _Wolfdieter Lang_, Feb 01 2014: (Start) %e A143326 The triangle Tri(n,m) := T(m,n-(m-1)) begins: %e A143326 n\m 1 2 3 4 5 6 7 8 9 10 ... %e A143326 1: 1 %e A143326 2: 2 1 %e A143326 3: 3 4 1 %e A143326 4: 4 9 10 1 %e A143326 5: 5 16 33 22 1 %e A143326 6: 6 25 76 105 52 1 %e A143326 7: 7 36 145 316 345 106 1 %e A143326 8: 8 49 246 745 1336 1041 232 1 %e A143326 9: 9 64 385 1506 3865 5356 3225 472 1 %e A143326 10: 10 81 568 2737 9276 19345 21736 9705 976 1 %e A143326 ... %e A143326 For the columns see A000027, A000290, A081437, ... (End) %p A143326 with(numtheory): %p A143326 f0:= proc(n) option remember; %p A143326 unapply(k^n-add(f0(d)(k), d=divisors(n) minus {n}), k) %p A143326 end: %p A143326 g0:= proc(n) option remember; unapply(add(f0(j)(x), j=1..n), x) end: %p A143326 T:= (n, k)-> g0(n)(k): %p A143326 seq(seq(T(n, 1+d-n), n=1..d), d=1..12); %t A143326 f0[n_] := f0[n] = Function[k, k^n-Sum[f0[d][k], {d, Divisors[n] // Most}]]; g0[n_] := g0[n] = Function[x, Sum[f0[j][x], {j, 1, n}]]; T[n_, k_] := g0[n][k]; Table[T[n, 1+d-n], {d, 1, 12}, {n, 1, d}]//Flatten (* _Jean-François Alcover_, Feb 12 2014, translated from Maple *) %Y A143326 Column 1: A000012. Rows 1-3: A000027, A000290, A081437 and A085490. See also A143324, A143327, A134541, A008683. %K A143326 nonn,tabl %O A143326 1,2 %A A143326 _Alois P. Heinz_, Aug 07 2008