This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143331 #16 Jan 30 2025 15:28:15 %S A143331 1,1,2,2,1,1,2,1,2,1,2,2,1,2,1,2,1,1,2,2,1,1,2,1,2,1,2,1,1,2,2,1,2,1, %T A143331 2,2,1,1,2,1,2,1,2,2,1,2,1,2,1,1,2,2,1,2,1,2,2,1,1,2,1,2,1,2,1,1,2,2, %U A143331 1,1,2,1,2,1,2,2,1,2,1,2,1,1,2,2,1,1,2,1,2,1,2,1,1,2,2,1,2,1,2,2,1,1,2,1,2 %N A143331 Lengths of successive runs of 0's in the Thue-Morse sequence A010060. %C A143331 Also lengths of successive runs of 1's in the Thue-Morse sequence A010059. %C A143331 Also lengths of successive runs of 1's in the Thue-Morse sequence A001285. %H A143331 Ray Chandler, <a href="/A143331/b143331.txt">Table of n, a(n) for n=1..10923</a> %F A143331 a(n) = A026465(2n-1). %e A143331 A010060 begins 011010011001011010010110011010011... so the runs of 0's have lengths 1 1 2 2 1 1 2 1 2 1 2 2 1 2 1 2 1 1 ... %t A143331 Map[Length,Most[Split[ThueMorse[Range[0,500]]]][[;;;;2]]] (* _Paolo Xausa_, Dec 19 2023 *) %o A143331 (Python) %o A143331 def A143331(n): %o A143331 if n==1: return 1 %o A143331 def iterfun(f,n=0): %o A143331 m, k = n, f(n) %o A143331 while m != k: m, k = k, f(k) %o A143331 return m %o A143331 def f(x): %o A143331 c, s = x, bin(x)[2:] %o A143331 l = len(s) %o A143331 for i in range(l&1^1,l,2): %o A143331 c -= int(s[i])+int('0'+s[:i],2) %o A143331 return c %o A143331 return iterfun(lambda x:f(x)+(n<<1)-1,(n<<1)-1)-iterfun(lambda x:f(x)+(n-1<<1),(n-1<<1)) # _Chai Wah Wu_, Jan 30 2025 %Y A143331 Cf. A010060, A104248. %Y A143331 Cf. A001285, A010059, A026465. %K A143331 nonn,easy %O A143331 1,3 %A A143331 _Ray Chandler_, Aug 08 2008