cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143336 Expansion of K(k) * (2 * E(k) - K(k)) / (Pi/2)^2 in powers of q where E(k), K(k) are complete elliptic integrals and q = exp(-Pi * K(k') / K(k)).

This page as a plain text file.
%I A143336 #8 Apr 07 2015 20:56:40
%S A143336 1,-8,-8,-32,-40,-48,-32,-64,-104,-104,-48,-96,-160,-112,-64,-192,
%T A143336 -232,-144,-104,-160,-240,-256,-96,-192,-416,-248,-112,-320,-320,-240,
%U A143336 -192,-256,-488,-384,-144,-384,-520,-304,-160,-448,-624,-336,-256,-352,-480,-624,-192,-384,-928,-456,-248,-576,-560,-432
%N A143336 Expansion of K(k) * (2 * E(k) - K(k)) / (Pi/2)^2 in powers of q where E(k), K(k) are complete elliptic integrals and q = exp(-Pi * K(k') / K(k)).
%F A143336 The generating function equals 0 when 2 * E(k) = K(k) at q = 0.1076539192... (A072558) the "One-Ninth" constant.
%F A143336 Expansion of (P(q) - 2 * P(q^2) + 4 * P(q^4)) / 3 in powers of q where P() is a Ramanujan Lambert series.
%F A143336 G.f.: 1 - 8 * Sum_{k>0} k * x^k / (1 - (-x)^k) = 1 + 8 * Sum_{k>0} (-x)^k / (1 + (-x)^k)^2.
%F A143336 a(n) = (-1)^n * A122858(n). a(n) = -8 * A113184(n) unless n=0.
%e A143336 G.f. = 1 - 8*q - 8*q^2 - 32*q^3 - 40*q^4 - 48*q^5 - 32*q^6 - 64*q^7 - 104*q^8 + ...
%t A143336 a[ n_] := If[ n < 1, Boole[n == 0], -(-1)^n 8 Sum[(-1)^d d, {d, Divisors @ n}]]; (* _Michael Somos_, Apr 07 2015 *)
%t A143336 a[ n_] := SeriesCoefficient[ With[{m = InverseEllipticNomeQ[ q]}, EllipticK[ m] (2 EllipticE[ m] - EllipticK[ m]) (2/Pi)^2], {q, 0, n}]; (* _Michael Somos_, Apr 07 2015 *)
%o A143336 (PARI) {a(n) = if( n<1, n==0, -(-1)^n * 8 * sumdiv(n, d, (-1)^d * d))};
%Y A143336 Cf. A113184, A122858.
%K A143336 sign
%O A143336 0,2
%A A143336 _Michael Somos_, Aug 09 2008