This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143343 #19 Aug 10 2019 18:42:22 %S A143343 1,1,2,1,2,3,1,1,1,1,1,2,3,1,5,1,1,1,1,1,1,1,2,3,1,1,1,7,1,1,1,1,1,1, %T A143343 1,1,1,2,3,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,11,1,1, %U A143343 1,1,1,1,1,1,1,1,1,1,1,2,3,1,5,1,7,1,1,1,1,1,13,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A143343 Triangle T(n,k) (n>=0, 1<=k<=n+1) read by rows: T(n,1)=1 for n>=0, T(1,2)=2. If n>=3 is odd then T(n,k)=1 for all k. If n>=3 is even then if k is prime and k-1 divides n then T(n,k)=k, otherwise T(n,k)=1. %C A143343 By the von Stadt-Clausen theorem, the product of the terms in row n is the denominator of the Bernoulli number B_n. %D A143343 H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1. %e A143343 The triangle begins: %e A143343 1, %e A143343 1,2, %e A143343 1,2,3, %e A143343 1,1,1,1, %e A143343 1,2,3,1,5, %e A143343 1,1,1,1,1,1, %e A143343 1,2,3,1,1,1,7, %e A143343 1,1,1,1,1,1,1,1, %e A143343 1,2,3,1,5,1,1,1,1, %e A143343 1,1,1,1,1,1,1,1,1,1, %e A143343 1,2,3,1,1,1,1,1,1,1,11, %e A143343 1,1,1,1,1,1,1,1,1,1,1,1, %e A143343 1,2,3,1,5,1,7,1,1,1,1,1,13, %e A143343 1,1,1,1,1,1,1,1,1,1,1,1,1,1, %e A143343 ... %Y A143343 Cf. A002445, A027642, A080092, A127093, A138239, A138243, A176079, A191904, A191910. %K A143343 nonn,tabl %O A143343 0,3 %A A143343 _Gary W. Adamson_ & _Mats Granvik_, Aug 09 2008 %E A143343 Entry revised by _N. J. A. Sloane_, Aug 10 2019