cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143359 Triangle read by rows, T(n,k) = number of symmetric ordered trees with n edges and root degree k (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 1, 1, 6, 0, 3, 0, 1, 10, 2, 4, 2, 1, 1, 20, 0, 10, 0, 4, 0, 1, 35, 5, 15, 5, 5, 3, 1, 1, 70, 0, 35, 0, 15, 0, 5, 0, 1, 126, 14, 56, 14, 21, 9, 6, 4, 1, 1, 252, 0, 126, 0, 56, 0, 21, 0, 6, 0, 1, 462, 42, 210, 42, 84, 28, 28, 14, 7, 5, 1, 1, 924, 0, 462, 0, 210, 0, 84, 0, 28, 0, 7, 0, 1
Offset: 1

Views

Author

Emeric Deutsch, Aug 15 2008

Keywords

Comments

Number of symmetric Dyck n-paths with k returns to the x-axis. - David Scambler, Aug 16 2012

Examples

			Triangle starts:
   1;
   1,  1;
   2,  0,  1;
   3,  1,  1,  1;
   6,  0,  3,  0,  1;
  10,  2,  4,  2,  1,  1;
  20,  0, 10,  0,  4,  0,  1;
  35,  5, 15,  5,  5,  3,  1,  1;
		

Crossrefs

Cf. A001405, A000108 (column 2), A143360, A037952 (column 3).

Programs

  • Maple
    C:=proc(z) options operator, arrow: (1/2-(1/2)*sqrt(1-4*z))/z end proc: S:=1/(1-z-z^2*C(z^2)): G:=(1+t*z*S)/(1-t^2*z^2*C(z^2))-1: Gser:=simplify(series(G, z=0,15)): for n to 13 do P[n]:=coeff(Gser,z,n) end do: for n to 13 do seq(coeff(P[n],t,j),j=1..n) end do; # yields sequence in triangular form
  • Mathematica
    Module[{nmax = 13, G, C, S},
       G = (1 + t*z*S[z])/(1 - t^2*z^2*C[z^2]) - 1;
       S[z_] = 1/(1 - z - z^2*C[z^2]) ;
       C[z_] = (1 - Sqrt[1 - 4 z])/(2 z);
       CoefficientList[#/t + O[t]^nmax, t]& /@
       CoefficientList[G/z + O[z]^nmax, z]
    ] // Flatten (* Jean-François Alcover, Apr 09 2024 *)

Formula

G.f. = (1+t*z*S)/(1-t^2*z^2*C(z^2))-1, where S = 1/(1-z-z^2*C(z^2)) is the g.f. of the sequence binomial(n, floor(n/2)) (A001405) and C(z) = (1-sqrt(1-4z))/(2z) is the generating function of the Catalan numbers (A000108).
Sum_{k=1..n} T(n,k) = A001405(n).
T(n,1) = A001405(n-1).
Sum_{k=1..n} k*T(n,k) = A143360(n).
Sum_{k=2..n} T(n,k) = A037952(n). - R. J. Mathar, Sep 24 2021