cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143360 Sum of root degrees of all symmetric ordered trees with n edges.

Original entry on oeis.org

1, 3, 5, 12, 20, 45, 77, 168, 294, 630, 1122, 2376, 4290, 9009, 16445, 34320, 63206, 131274, 243542, 503880, 940576, 1939938, 3640210, 7488432, 14115100, 28973100, 54826020, 112326480, 213286590, 436268025, 830905245, 1697168160, 3241119750, 6611884290
Offset: 1

Views

Author

Emeric Deutsch, Aug 15 2008

Keywords

Crossrefs

Programs

  • Maple
    C := z -> (1/2-(1/2)*sqrt(1-4*z))/z: G := z*C(z^2)^2*(1+2*z*C(z^2))/(1-z*C(z^2)): Gser := series(G, z=0, 40): seq(coeff(Gser, z, n), n=1..34);
  • Mathematica
    Module[{nmax = 33, G, C}, G = z*C[z^2]^2*(1 + 2*z*C[z^2])/(1 - z*C[z^2]); C[z_] = (1/2-(1/2)*Sqrt[1-4*z])/z; CoefficientList[G/z + O[z]^nmax, z]] (* Jean-François Alcover, Apr 09 2024 *)

Formula

G.f.: z*C(z^2)^2*(1+2*z*C(z^2))/(1-z*C(z^2)), where C(z)=(1-sqrt(1-4*z))/(2*z) is the g.f. of the Catalan numbers (A000108).
a(n) = Sum_{k=1..n} k * A143359(n,k).
D-finite with recurrence 2*(n+3)*a(n) +(-n-5)*a(n-1) +(-11*n-3)*a(n-2) +2*(2*n+1)*a(n-3) +12*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 24 2022