cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143364 Triangle read by rows: T(n,k) is the number of {0-1-2}-trees with n edges and k protected vertices (0<=k<=n-1). A {0-1-2}-tree is an ordered tree in which the outdegree of every vertex is 0, 1, or 2. A protected vertex in an ordered tree is a vertex at least 2 edges away from its leaf descendants.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 4, 6, 9, 1, 1, 4, 19, 12, 14, 1, 1, 8, 24, 53, 20, 20, 1, 1, 8, 62, 78, 116, 30, 27, 1, 1, 16, 80, 250, 190, 220, 42, 35, 1, 1, 16, 184, 382, 735, 390, 379, 56, 44, 1, 1, 32, 240, 1020, 1270, 1785, 714, 609, 72, 54, 1, 1, 32, 512, 1580, 3900, 3390, 3808
Offset: 1

Views

Author

Emeric Deutsch, Aug 20 2008

Keywords

Comments

Row sums are the Motzkin numbers (A001006).
T(n,0) is the sequence 1,1,2,2,4,4,8,8,16,16,... (A016116).
Sum(k*T(n,k),k=0..n-1) = A143335(n).

Examples

			Triangle starts:
1;
1,1;
2,1,1;
2,5,1,1;
4,6,9,1,1;
4,19,12,14,1,1;
		

Crossrefs

Programs

  • Maple
    g:=((1-t*z-2*z^2-sqrt((1-t*z)^2-4*z^2*(1-z^2+t*z^2)))*1/2)/(t*z^2): gser:= simplify(series(g,z=0,16)): for n to 12 do P[n]:=sort(coeff(gser,z,n)) end do: for n to 12 do seq(coeff(P[n],t,j),j=0..n-1) end do; # yields sequence in triangular form

Formula

G.f.: g, where g=g(t,z) satisfies tz^2*g^2-(1-tz-2z^2)g+z(1+z)=0.