This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143376 #29 May 22 2025 10:21:35 %S A143376 1,4,2,12,12,4,32,48,32,8,80,160,160,80,16,192,480,640,480,192,32,448, %T A143376 1344,2240,2240,1344,448,64,1024,3584,7168,8960,7168,3584,1024,128, %U A143376 2304,9216,21504,32256,32256,21504,9216,2304,256,5120,23040,61440,107520 %N A143376 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the cube Q_n of dimension n (1 <= k <= n). %C A143376 Sum of entries in row n = 2^(n-1)*(2^n-1) = A006516. %C A143376 The entries in row n are the coefficients of the Wiener polynomial of the cube Q_n. %C A143376 Sum_{k=1..n} k*T(n,k) = n*4^(n-1) = A002697(n) = the Wiener index of the cube Q_n. %C A143376 Triangle T(n,k), 1 <= k <= n, read by rows given by [1,1,0,0,0,0,0,...]DELTA[1,1,0,0,0,0,0,...] where DELTA is the operator defined in A084938; subtriangle of triangle A055372. - _Philippe Deléham_, Oct 14 2008 %H A143376 Indranil Ghosh, <a href="/A143376/b143376.txt">Rows 1..125, flattened</a> %H A143376 B. E. Sagan, Y-N. Yeh and P. Zhang, <a href="http://users.math.msu.edu/users/sagan/Papers/Old/wpg-pub.pdf">The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., 60, 1996, 959-969. %F A143376 T(n,k) = 2^(n-1)*binomial(n,k). %F A143376 G.f.: G(q,z) = qz/((1-2z)(1-2z-2zq)). %F A143376 T(n,k) = A055372(n,k). - _Philippe Deléham_, Oct 14 2008 %e A143376 T(2,1)=4, T(2,2)=2 because in Q_2 (a square) there are 4 distances equal to 1 and 2 distances equal to 2. %e A143376 Triangle starts: %e A143376 1; %e A143376 4, 2; %e A143376 12, 12, 4; %e A143376 32, 48, 32, 8; %e A143376 80, 160, 160, 80, 16; %p A143376 T:=proc(n,k) options operator, arrow: 2^(n-1)*binomial(n,k) end proc: for n to 10 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form %t A143376 nn = 8; A[u_, z_] := (z + u z)/(1 - (z + u z)); %t A143376 Drop[Map[Select[#, # > 0 &] &, Map[Drop[#, 1] &,CoefficientList[Series[1/(1 - A[u, z]), {z, 0, nn}], {z, u}]]],1] // Grid (* _Geoffrey Critzer_, Mar 04 2017 *) %t A143376 Flatten[Table[2^(n-1) Binomial[n, k], {n, 10},{k,n}]] (* _Indranil Ghosh_, Mar 06 2017 *) %o A143376 (PARI) tabl(nn) = {for (n=1, nn, for(k=1, n, print1(2^(n-1) * binomial(n, k),", ");); print();); }; %o A143376 tabl(10); \\ _Indranil Ghosh_, Mar 06 2017 %o A143376 (Python) %o A143376 import math %o A143376 f=math.factorial %o A143376 def C(n,r): return f(n) / f(r) / f(n-r) %o A143376 i=1 %o A143376 for n in range(1,126): %o A143376 for k in range(1,n+1): %o A143376 print(str(i)+" "+str(2**(n-1)*C(n,k))) %o A143376 i+=1 # _Indranil Ghosh_, Mar 06 2017 %Y A143376 Cf. A002697, A006516. %K A143376 nonn,tabl %O A143376 1,2 %A A143376 _Emeric Deutsch_, Sep 05 2008 %E A143376 Typo corrected by _Philippe Deléham_, Jan 05 2009