This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143388 #15 May 31 2025 09:43:15 %S A143388 1,2,8,40,221,1288,7752,47652,297275,1874730,11920740,76292736, %T A143388 490828828,3171317360,20563942288,133749903324,872196460359, %U A143388 5700580759510,37332393806400,244914161562840,1609234420792845,10588423438256160,69757296470927520,460089876775105200 %N A143388 a(n) = Sum_{k=0..n} A033184(n,k)*A033184(n,n-k), where Catalan triangle entry A033184(n,k) = C(2*n-k,n-k)*(k+1)/(n+1). %H A143388 Ping Sun, <a href="https://doi.org/10.1016/j.disc.2017.10.005">Enumeration formulas for standard Young tableaux of nearly hollow rectangular shapes</a>, Discrete Mathematics, Volume 341, Issue 4, April 2018, Pages 1144-1149. %F A143388 a(n) = (n^2 + 3*n + 6)*(3*n + 1)!/(n!*(2*n + 3)!). %F A143388 a(n) ~ 3*sqrt(3)*(27/4)^n/(16*sqrt(n*Pi)). - _Stefano Spezia_, May 31 2025 %e A143388 Catalan triangle A033184 begins: %e A143388 1; %e A143388 1, 1; %e A143388 2, 2, 1; %e A143388 5, 5, 3, 1; %e A143388 14, 14, 9, 4, 1; %e A143388 42, 42, 28, 14, 5, 1; %e A143388 ... %e A143388 where column k equals the (k+1)-fold convolution of A000108, k>=0. %e A143388 Illustrate a(n) = Sum_{k=0..n} A033184(n,k)*A033184(n,n-k): %e A143388 a(1) = 1*1 + 1*1 = 2; %e A143388 a(2) = 2*1 + 2*2 + 1*2 = 8; %e A143388 a(3) = 5*1 + 5*3 + 3*5 + 1*5 = 40; %e A143388 a(4) = 14*1 + 14*4 + 9*9 + 4*14 + 1*14 = 221. %o A143388 (PARI) {a(n)=sum(k=0,n,binomial(2*n-k,n-k)*(k+1)/(n+1)*binomial(n+k,k)*(n-k+1)/(n+1))} %o A143388 (PARI) {a(n)=(n^2 + 3*n + 6)*(3*n + 1)!/(n!*(2*n + 3)!)} %Y A143388 Cf. A033184, A000108. %K A143388 nonn,tabl %O A143388 0,2 %A A143388 _Paul D. Hanna_, Aug 11 2008 %E A143388 a(21)-a(23) from _Stefano Spezia_, May 31 2025