This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143397 #29 Aug 03 2021 15:37:17 %S A143397 1,0,1,0,1,3,0,1,6,10,0,1,11,36,41,0,1,20,105,230,196,0,1,37,285,955, %T A143397 1560,1057,0,1,70,756,3535,8680,11277,6322,0,1,135,2002,12453,41720, %U A143397 80682,86800,41393,0,1,264,5347,43008,186669,485982,773724,708948,293608 %N A143397 Triangle T(n,k)=number of forests of labeled rooted trees of height at most 1, with n labels and k nodes, where any root may contain >= 1 labels, n >= 0, 0<=k<=n. %H A143397 Alois P. Heinz, <a href="/A143397/b143397.txt">Rows n = 0..140, flattened</a> %H A143397 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A143397 T(n,k) = Sum_{t=0..k} C(n,k-t) * Stirling2(n-(k-t),t) * t^(k-t). %F A143397 E.g.f.: exp(y*exp(x*y)*(exp(x)-1)). - _Vladeta Jovovic_, Dec 08 2008 %e A143397 T(3,2) = 6: {1,2}{3}, {1,3}{2}, {2,3}{1}, {1,2}<-3, {1,3}<-2, {2,3}<-1. %e A143397 Triangle begins: %e A143397 1; %e A143397 0, 1; %e A143397 0, 1, 3; %e A143397 0, 1, 6, 10; %e A143397 0, 1, 11, 36, 41; %e A143397 0, 1, 20, 105, 230, 196; %e A143397 0, 1, 37, 285, 955, 1560, 1057; %e A143397 0, 1, 70, 756, 3535, 8680, 11277, 6322; %e A143397 ... %p A143397 T:= (n,k)-> add(binomial(n, k-t)*Stirling2(n-(k-t),t)*t^(k-t), t=0..k): %p A143397 seq(seq(T(n, k), k=0..n), n=0..11); %t A143397 T[n_, k_] := Sum[Binomial[n, k-t]*StirlingS2[n - (k-t), t]*t^(k-t), {t, 0, k}]; T[0, 0] = 1; T[_, 0] = 0; %t A143397 Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 31 2016, translated from Maple *) %Y A143397 Columns k=0-2: A000007, A000012, A006127. Diagonal: A000248. See also A048993, A008277, A007318, A143405 for row sums. %K A143397 nonn,tabl %O A143397 0,6 %A A143397 _Alois P. Heinz_, Aug 12 2008