This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143401 #14 May 14 2016 14:50:38 %S A143401 0,0,0,0,0,0,1,63,2282,62370,1428987,28979181,537306484,9302333040, %T A143401 152587968533,2396472657579,36320866824606,534421447961310, %U A143401 7670116319449039,107781064078390857,1487396442778796648,20208696810429799980,270879169288278532905 %N A143401 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=6. %C A143401 a(n) is also the number of forests of 6 labeled rooted trees of height at most 1 with n labels, where any root may contain >= 1 labels. %H A143401 Alois P. Heinz, <a href="/A143401/b143401.txt">Table of n, a(n) for n = 0..300</a> %H A143401 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A143401 G.f.: x^6/((1-6x)(1-7x)(1-8x)(1-9x)(1-10x)(1-11x)(1-12x)). %F A143401 E.g.f.: exp(6*x)*((exp(x)-1)^6)/6!. %p A143401 a:= proc(k::nonnegint) local M; M:= Matrix(k+1, (i,j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x,u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1,k+1] end(6); seq(a(n), n=0..27); %Y A143401 6th column of A143395. %K A143401 nonn %O A143401 0,8 %A A143401 _Alois P. Heinz_, Aug 12 2008