cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143405 Number of forests of labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, also row sums of A143395, A143396 and A143397.

This page as a plain text file.
%I A143405 #66 Jul 22 2022 04:03:23
%S A143405 1,1,4,17,89,552,3895,30641,265186,2497551,25373097,276105106,
%T A143405 3199697517,39297401197,509370849148,6943232742493,99217486649933,
%U A143405 1482237515573624,23093484367004715,374416757914118941,6304680593346141746,110063311977033807187
%N A143405 Number of forests of labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, also row sums of A143395, A143396 and A143397.
%C A143405 a(n) is the number of the partitions of an n-set where each block is endowed with a nonempty subset. - _Emanuele Munarini_, Sep 15 2016
%H A143405 Alois P. Heinz, <a href="/A143405/b143405.txt">Table of n, a(n) for n = 0..504</a>
%H A143405 Vaclav Kotesovec, <a href="https://arxiv.org/abs/2207.10568">Asymptotics for a certain group of exponential generating functions</a>, arXiv:2207.10568 [math.CO], Jul 13 2022.
%H A143405 Vaclav Kotesovec, <a href="/A143405/a143405.pdf">Asymptotics of OEIS A143405, A355291 and the generalization</a>, Jul 12 2022 (this version also includes several figures).
%H A143405 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A143405 a(n) = Sum_{k=0..n} Sum_{t=k..n} C(n,t) * Stirling2(t,k)*k^(n-t).
%F A143405 a(n) = Sum_{k=0..n} Sum_{t=0..k} C(n,k) * Stirling2(k,t)*t^(n-k).
%F A143405 a(n) = Sum_{k=0..n} Sum_{t=0..k} C(n,k-t) * Stirling2(n-(k-t),t)*t^(k-t).
%F A143405 E.g.f.: exp(exp(x)*(exp(x)-1)). - _Vladeta Jovovic_, Dec 08 2008
%F A143405 a(n) = sum(binomial(n,k)*2^k*bell(k)*S(n-k,-1),k=0..n), where bell(n) are the Bell numbers (A000110) and S(n,x) = sum(Stirling2(n,k)*x^k,k=0..n) are the Stirling (or exponential) polynomials. - _Emanuele Munarini_, Sep 15 2016
%F A143405 Identity: sum(binomial(n,k)*a(k)*bell(n-k),k=0..n) = 2^n*bell(n). - _Emanuele Munarini_, Sep 15 2016
%F A143405 a(n) = Sum_{k=0..n} A047974(k) * Stirling2(n,k). - _Seiichi Manyama_, May 14 2022
%F A143405 a(n) ~ exp(exp(2*z) - exp(z) - n) * (n/z)^(n + 1/2) / sqrt(2*(1 + 2*z)*exp(2*z) - (1 + z)*exp(z)), where z = LambertW(n)/2 - 1/(1 + 2/LambertW(n) - 4 * n^(1/2) * (1 + LambertW(n)) / LambertW(n)^(3/2)). - _Vaclav Kotesovec_, Jul 03 2022
%F A143405 a(n) ~ 2^n * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n * exp(n + 1/8 - n/LambertW(n) + sqrt(n/LambertW(n)))). - _Vaclav Kotesovec_, Jul 08 2022
%e A143405 a(2) = 4, because there are 4 forests for 2 labels: {1,2}, {1}{2}, {1}<-2, {2}<-1.
%p A143405 a:= n-> add(add(binomial(n, t)*Stirling2(t, k)*k^(n-t), t=k..n), k=0..n):
%p A143405 seq(a(n), n=0..30);
%p A143405 # second Maple program:
%p A143405 a:= proc(n) option remember; `if`(n=0, 1, add(
%p A143405       a(n-j)*binomial(n-1, j-1)*(2^j-1), j=1..n))
%p A143405     end:
%p A143405 seq(a(n), n=0..23);  # _Alois P. Heinz_, Oct 05 2019
%t A143405 CoefficientList[Series[Exp[Exp[t] (Exp[t] - 1)], {t, 0, 12}], t] Range[0, 12]! (* _Emanuele Munarini_, Sep 15 2016 *)
%t A143405 Table[Sum[Binomial[n, k] 2^k BellB[k] BellB[n - k, -1], {k, 0, n}], {n, 0, 12}] (* _Emanuele Munarini_, Sep 15 2016 *)
%t A143405 Table[Sum[BellY[n, k, 2^Range[n] - 1], {k, 0, n}], {n, 0, 20}] (* _Vladimir Reshetnikov_, Nov 09 2016 *)
%o A143405 (PARI) a(n) = sum(k=0, n, k!*sum(j=0, k\2, 1/(j!*(k-2*j)!))*stirling(n, k, 2)); \\ _Seiichi Manyama_, May 14 2022
%Y A143405 Cf. A055882, A143395, A143396, A143397, A048993, A008277, A007318, A000110, A355291.
%K A143405 nonn
%O A143405 0,3
%A A143405 _Alois P. Heinz_, Aug 12 2008