This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143406 #16 Mar 29 2016 20:44:13 %S A143406 1,1,4,14,55,252,1319,7737,50040,351636,2659375,21519027,185279186, %T A143406 1688183135,16206401020,163376811610,1724624368377,19011582728772, %U A143406 218312877627483,2605840967052663,32271957793959066,413991491885677105,5492584623675060620 %N A143406 Number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains a nonempty set of labels of equal size, also row sums of A143398. %H A143406 Alois P. Heinz, <a href="/A143406/b143406.txt">Table of n, a(n) for n = 0..530</a> %H A143406 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A143406 a(n) = 1 if n=0 and a(n) = n! * Sum_{k=1..n} Sum_{i=1..floor(n/k)} i^(n-k*i)/ ((n-k*i)!*i!*k!^i) else. %e A143406 a(2) = 4, because 4 forests with 2 labels exist: {1}{2}, {1}<-2, {2}<-1, {1,2}. %p A143406 a:= n-> if n=0 then 1 else n! * add(add(i^(n-k*i)/ %p A143406 ((n-k*i)!*i!*k!^i), i=1..floor(n/k)), k=1..n) fi: %p A143406 seq(a(n), n=0..30); %Y A143406 Cf. A143398, A000142. %K A143406 nonn %O A143406 0,3 %A A143406 _Alois P. Heinz_, Aug 12 2008