cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143406 Number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains a nonempty set of labels of equal size, also row sums of A143398.

This page as a plain text file.
%I A143406 #16 Mar 29 2016 20:44:13
%S A143406 1,1,4,14,55,252,1319,7737,50040,351636,2659375,21519027,185279186,
%T A143406 1688183135,16206401020,163376811610,1724624368377,19011582728772,
%U A143406 218312877627483,2605840967052663,32271957793959066,413991491885677105,5492584623675060620
%N A143406 Number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains a nonempty set of labels of equal size, also row sums of A143398.
%H A143406 Alois P. Heinz, <a href="/A143406/b143406.txt">Table of n, a(n) for n = 0..530</a>
%H A143406 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A143406 a(n) = 1 if n=0 and a(n) = n! * Sum_{k=1..n} Sum_{i=1..floor(n/k)} i^(n-k*i)/ ((n-k*i)!*i!*k!^i) else.
%e A143406 a(2) = 4, because 4 forests with 2 labels exist: {1}{2}, {1}<-2, {2}<-1, {1,2}.
%p A143406 a:= n-> if n=0 then 1 else n! * add(add(i^(n-k*i)/
%p A143406         ((n-k*i)!*i!*k!^i), i=1..floor(n/k)), k=1..n) fi:
%p A143406 seq(a(n), n=0..30);
%Y A143406 Cf. A143398, A000142.
%K A143406 nonn
%O A143406 0,3
%A A143406 _Alois P. Heinz_, Aug 12 2008