This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143414 #30 Oct 01 2024 23:19:00 %S A143414 0,2,30,492,9620,222630,5989242,184139480,6377545512,245868202890, %T A143414 10446648201110,485126443539012,24449173476952380,1329144227959100462, %U A143414 77535552689576436210,4831278674685354629040,320262424087652686405712 %N A143414 Apéry-like numbers for the constant 1/e: a(n) = (1/(n-1)!)*Sum_{k = 0..n-1} binomial(n-1,k)*(2*n-k)!. %C A143414 This sequence satisfies the recursion (n-1)^2*a(n) - n^2*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1), which leads to a rapidly converging series for the constant 1/e: 1/e = 1/2 - 2 * Sum_{n >= 2} (-1)^n * n^2/(a(n)*a(n-1)). %C A143414 Notice the striking resemblance to the theory of the Apéry numbers A(n) = A005258(n), which satisfy a similar recurrence relation n^2*A(n) - (n-1)^2*A(n-2) = (11*n^2-11*n+3)*A(n-1) and which appear in the series acceleration formula zeta(2) = 5*Sum_{n>=1} 1/(n^2*A(n)*A(n-1)). Compare with A143413 and A143415. %H A143414 Seiichi Manyama, <a href="/A143414/b143414.txt">Table of n, a(n) for n = 0..365</a> %H A143414 A. van der Poorten, <a href="http://pracownicy.uksw.edu.pl/mwolf/Poorten_MI_195_0.pdf"> A proof that Euler missed ... Apery's proof of the irrationality of zeta(3). An informal report</a>, Math. Intelligencer 1 (1978/79), no. 4, 195-203. %F A143414 a(n) = (1/(n-1)!)*Sum_{k = 0..n-1} binomial(n-1,k)*(2*n-k)!. %F A143414 Recurrence relation: a(0) = 0, a(1) = 2, (n-1)^2*a(n) - n^2*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1), n >= 2. %F A143414 Let b(n) denote the solution to this recurrence with initial conditions b(0) = -1, b(1) = 1. Then b(n) = A143413(n) = (1/(n-1)!)*Sum_{k = 0..n+1} (-1)^k*binomial(n+1,k)*(2*n-k)!. %F A143414 The rational number b(n)/a(n) is equal to the Padé approximation to exp(x) of degree (n+1,n-1) evaluated at x = -1 and b(n)/a(n) -> 1/e very rapidly. For example, |b(100)/a(100) - 1/e| is approximately 2.177 * 10^(-437). %F A143414 The identity a(n)*b(n-1) - a(n-1)*b(n) = (-1)^n *2*n^2 leads to rapidly converging series for the constants 1/e and e: 1/e = 1/2 - 2*Sum_{n >= 2} (-1)^n * n^2/(a(n)*a(n-1)) = 1/2 - 2*(2^2/(2*30) - 3^2/(30*492) + 4^2/(492*9620) - ...); e = 2 * Sum_{n >= 1} (-1)^n * n^2/(b(n)*b(n-1)) = 2*(1 + 2^2/(1*11) - 3^2/(11*181) + 4^2/(181*3539) - ...). %F A143414 a(n) = (BesselK(n-1/2,1/2)-(1-2*n)*BesselK(n+1/2,1/2)) * exp(1/2)/(2*Pi^(1/2)). - _Mark van Hoeij_, Nov 12 2009 %F A143414 a(n) = ((2*n)!/(n-1)!)*hypergeom([1-n], [-2*n], 1) for n > 0. - _Peter Luschny_, May 14 2020 %F A143414 a(n) ~ 2^(2*n + 1/2) * n^(n+1) / exp(n - 1/2). - _Vaclav Kotesovec_, Jul 11 2021 %p A143414 a := n -> 1/(n-1)!*add (binomial(n-1,k)*(2*n-k)!,k = 0..n-1): seq(a(n),n = 0..19); %p A143414 # Alternative: %p A143414 A143414 := n -> `if`(n=0, 0, ((2*n)!/(n-1)!)*hypergeom([1-n], [-2*n], 1)): %p A143414 seq(simplify(A143414(n)), n = 0..16); # _Peter Luschny_, May 14 2020 %t A143414 Table[(1/(n-1)!)*Sum[Binomial[n-1,k]*(2*n-k)!, {k,0,n-1}], {n,0,50}] (* _G. C. Greubel_, Oct 24 2017 *) %o A143414 (PARI) for(n=0,25, print1((1/(n-1)!)*sum(k=0,n-1, binomial(n-1,k)*(2*n-k)!), ", ")) \\ _G. C. Greubel_, Oct 24 2017 %Y A143414 Cf. A143413, A143415. %Y A143414 The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.) %K A143414 easy,nonn %O A143414 0,2 %A A143414 _Peter Bala_, Aug 14 2008