This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143418 #15 Jul 14 2024 19:43:18 %S A143418 1,3,3,6,15,6,10,45,45,10,15,105,190,105,15,21,210,595,595,210,21,28, %T A143418 378,1540,2415,1540,378,28,36,630,3486,7875,7875,3486,630,36,45,990, %U A143418 7140,21945,31626,21945,7140,990,45,55,1485,13530,54285,106491,106491 %N A143418 Triangle read by rows. T(n,k) = binomial(n,k)*(binomial(n,k)-1)/2. %C A143418 Row sums = A108958: (1, 6, 27, 110, 430, 1652, ...). %H A143418 Harvey P. Dale, <a href="/A143418/b143418.txt">Table of n, a(n) for n = 1..1000</a> %F A143418 T(n,k) = A065420(n-1,k-1)/2. - _R. J. Mathar_, Apr 04 2012 %e A143418 Row 4 of Pascal's triangle (1, 4, 6, 4, 1) with each term squared = (1, 16, 36, 16, 1), then subtracting (1, 4, 6, 4, 1) = (0, 12, 30, 12, 0). Dividing by 2 and deleting the zeros, we get row 4 of A143418: (6, 15, 6). %e A143418 First few rows of the triangle = %e A143418 1; %e A143418 3, 3; %e A143418 6, 15, 6; %e A143418 10, 45, 45, 10; %e A143418 15, 105, 190, 105, 15; %e A143418 21, 210, 595, 595, 210, 21; %e A143418 28, 378, 1540, 2415, 1540, 378, 28; %e A143418 ... %p A143418 A143418 := proc(n,k) %p A143418 binomial(n,k)*(binomial(n,k)-1)/2 ; %p A143418 end proc: %p A143418 seq(seq(A143418(n,k),k=1..n-1),n=1..12) ; # _R. J. Mathar_, Apr 04 2012 %t A143418 Table[Binomial[n,k] (Binomial[n,k]-1)/2,{n,20},{k,n-1}]//Flatten (* _Harvey P. Dale_, Jun 14 2021 *) %Y A143418 Cf. A007318, A108958. %K A143418 nonn,easy,tabl %O A143418 1,2 %A A143418 _Gary W. Adamson_ and _Roger L. Bagula_, Aug 14 2008 %E A143418 Corrected by _Harvey P. Dale_, Jun 14 2021