This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143434 #13 Jun 16 2017 19:27:49 %S A143434 1,1,0,-1,0,0,-1,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0, %T A143434 0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0, %U A143434 -1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A143434 Expansion of f(x, -x^3) in powers of x where f(,) is Ramanujan's two-variable theta function. %H A143434 G. C. Greubel, <a href="/A143434/b143434.txt">Table of n, a(n) for n = 0..1000</a> %F A143434 Euler transform of period 16 sequence [ 1, -1, -1, 1, -1, 0, 1, -2, 1, 0, -1, 1, -1, -1, 1, -1, ...]. %F A143434 G.f.: Sum_{k>=0} (-1)^floor((k + 2) / 4) * x^(k * (k+1) / 2). %F A143434 a(n) = (-1)^n * A143433(n). %e A143434 1 + x - x^3 - x^6 - x^10 - x^15 + x^21 + x^28 + x^36 + x^45 - x^55 - x^66 + ... %e A143434 q + q^9 - q^25 - q^49 - q^81 - q^121 + q^169 + q^225 + q^289 + q^361 + ... %t A143434 a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), I x^2], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> I x}, {x, 0, n}]] %o A143434 (PARI) {a(n) = if( n<0, 0, if( issquare( 8*n + 1, &n), n = n\2; (-1)^((n + 2) \ 4), 0))} %o A143434 (PARI) {a(n) = local(A); if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k)^( [1, -1, 1, 1, -1, 1, 0, -1, 2, -1, 0, 1, -1, 1, 1, -1] [k%16 + 1]), 1 + x * O(x^n)), n))} %Y A143434 Cf. A143433. %K A143434 sign %O A143434 0,1 %A A143434 _Michael Somos_, Aug 14 2008