cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143497 Triangle of unsigned 2-Lah numbers.

This page as a plain text file.
%I A143497 #57 Mar 10 2024 20:18:23
%S A143497 1,4,1,20,10,1,120,90,18,1,840,840,252,28,1,6720,8400,3360,560,40,1,
%T A143497 60480,90720,45360,10080,1080,54,1,604800,1058400,635040,176400,25200,
%U A143497 1890,70,1,6652800,13305600,9313920,3104640,554400,55440,3080,88,1
%N A143497 Triangle of unsigned 2-Lah numbers.
%C A143497 For a signed version of this triangle see A062137. The unsigned 2-Lah number L(2; n,k) gives the number of partitions of the set {1, 2, ..., n} into k ordered lists with the restriction that the elements 1 and 2 must belong to different lists. More generally, the unsigned r-Lah number L(r; n, k) gives the number of partitions of the set {1, 2, ..., n} into k ordered lists with the restriction that the elements 1, 2, ..., r belong to different lists. If r = 1 there is no restriction and we obtain the unsigned Lah numbers A105278. For other cases see A143498 (r=3) and A143499 (r=4). We make some remarks on the general case.
%C A143497 The unsigned r-Lah numbers occur as connection constants in the generalized Lah identity (x + 2*r - 1)*(x + 2*r)*...*(x + 2*r + n - r - 2) = Sum_{k=r..n} L(r; n, k)*(x - 1)*(x - 2)*...*(x - k + r) for n >= r and where any empty products are taken equal to 1 (for a bijective proof of the identity, follow the proof of [Petkovsek and Pisanski] but restrict the first r of the Argonauts to different paths).
%C A143497 The unsigned r-Lah numbers satisfy the same recurrence as the unsigned Lah numbers, namely, L(r; n, k) = (n + k - 1)*L(r; n - 1,k) + L(r; n - 1,k - 1), but with the boundary conditions: L(r; n, k) = 0 if n < r or if k < r; L(r; r, r) = 1. The recurrence has the explicit solution L(r; n, k) = ((n - r)!/(k - r)!)*binomial(n + r - 1, k + r - 1) for n, k >= r. It follows that the unsigned r-Lah numbers have 'vertical' generating functions for k >= r of the form Sum_{n>=k} L(r; n, k)*t^n/(n -r)! = 1/(k - r)!*t^k/(1 - t)^(k + r). This yields the e.g.f. for the array of unsigned r-restricted Lah numbers in the form: Sum_{n,k>=r} L(r; n, k)*x^k*t^n/(n-r)! = (x*t)^r * 1/(1 - t)^(2*r) * exp(x*t/(1 - t)) = (x*t)^r (1 + (2*r + x)*t + (2r*(2*r + 1) + 2*(2*r + 1)*x + x^2)*t^2/2! + ...).
%C A143497 The array of unsigned r-Lah numbers begins
%C A143497   1
%C A143497   2r                  1
%C A143497   2r*(2r+1)           2*(2r+1)           1
%C A143497   2r*(2r+1)*(2r+2)    3*(2r+1)*(2r+2)    3*(2r+2)      1
%C A143497  ...
%C A143497 and equals exp(D(r)), where D(r) is the array with the sequence (2*r, 2*(2*r + 1), 3*(2*r + 2), 4*(2*r + 3), ...) on the main subdiagonal and zeros everywhere else.
%C A143497 The unsigned r-Lah numbers are related to the r-Stirling numbers: the lower triangular array of unsigned r-Lah numbers may be expressed as the matrix product St1(r) * St2(r), where St1(r) and St2(r) denote the arrays of r-Stirling numbers of the first and second kind respectively. The theory of r-Stirling numbers is developed in [Broder]. See A143491 - A143496 for tables of r-Stirling numbers. An alternative factorization for the array is as St1 * P^(2r - 2) * St2, where P denotes Pascal's triangle, A007318, St1 is the triangle of unsigned Stirling numbers of the first kind, abs(A008275) and St2 denotes the triangle of Stirling numbers of the second kind, A008277 (apply Theorem 10 of [Neuwirth]).
%C A143497 The array of unsigned r-Lah numbers is an example of the fundamental matrices sketched in A133314. So redefining the offset as n=0, given matrices A and B with A(n, k) = T(n, k)*a(n - k) and B(n, k) = T(n, k)*b(n - k), then A*B = C where C(n, k) = T(n,k)*[a(.) + b(.)]^(n - k), umbrally. An e.g.f. for the row polynomials of A is exp(x*t) exp{-x*t*[a*t/(a*t - 1)]}/(1 - a*t)^4 = exp(x*t) exp[(.)!*Laguerre(., 3, -x*t)* a(.)*t)], umbrally. - _Tom Copeland_, Sep 19 2008
%H A143497 Muniru A Asiru, <a href="/A143497/b143497.txt">Table of n, a(n) for n = 2..4951</a> Rows n = 2..100
%H A143497 A. Z. Broder, <a href="http://infolab.stanford.edu/TR/CS-TR-82-949.html">The r-Stirling numbers</a>, Report CS-TR-82-949, Stanford University, Department of Computer Science, 1982.
%H A143497 A. Z. Broder, <a href="https://doi.org/10.1016/0012-365X(84)90161-4">The r-Stirling numbers</a>, Discrete Math. 49, 241-259 (1984).
%H A143497 Gi-Sang Cheon and Ji-Hwan Jung, <a href="https://doi.org/10.1016/j.disc.2012.04.001">r-Whitney numbers of Dowling lattices</a>, Discrete Math., 312 (2012), 2337-2348.
%H A143497 Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, <a href="https://arxiv.org/abs/2302.08265">MC-finiteness of restricted set partition functions</a>, arXiv:2302.08265 [math.CO], 2023.
%H A143497 Robert S. Maier, <a href="https://arxiv.org/abs/2308.10332">Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers</a>, arXiv:2308.10332 [math.CO], 2023. See p. 19.
%H A143497 Erich Neuwirth, <a href="http://homepage.univie.ac.at/erich.neuwirth/papers/TechRep99-05.pdf">Recursively defined combinatorial functions: Extending Galton's board</a>, Tech Report TR 99-05, 1999.
%H A143497 Erich Neuwirth, <a href="https://doi.org/10.1016/S0012-365X(00)00373-3">Recursively defined combinatorial functions: Extending Galton's board</a>, Discrete Math. 239 No. 1-3, 33-51 (2001).
%H A143497 G. Nyul and G. Rácz, <a href="https://doi.org/10.1016/j.disc.2014.03.029">The r-Lah numbers</a>, Discrete Mathematics, 338 (2015), 1660-1666.
%H A143497 Marko Petkovsek and Tomaz Pisanski, <a href="https://www.researchgate.net/publication/284414612">Combinatorial interpretation of unsigned Stirling and Lah numbers</a>, University of Ljubljana, Preprint series, Vol. 40 (2002), 837.
%H A143497 Jose L. Ramirez and M. Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Ramirez2/ramirez12.html">A (p, q)-Analogue of the r-Whitney-Lah Numbers</a>, Journal of Integer Sequences, 19, 2016, #16.5.6.
%H A143497 Michael J. Schlosser and Meesue Yoo, <a href="https://doi.org/10.37236/6121">Elliptic Rook and File Numbers</a>, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
%H A143497 M. Shattuck, <a href="https://arxiv.org/abs/1412.8721">Generalized r-Lah numbers</a>, arXiv:1412.8721 [math.CO], 2014.
%F A143497 T(n, k) = ((n - 2)!/(k - 2)!)*C(n+1, k+1), for n, k >= 2.
%F A143497 Recurrence: T(n, k) = (n + k - 1)*T(n-1, k) + T(n-1, k-1) for n, k >= 2, with the boundary conditions: T(n, k) = 0 if n < 2 or k < 2; T(2, 2) = 1.
%F A143497 E.g.f. for column k: Sum_{n>=k} T(n, k)*t^n/(n - 2)! = 1/(k - 2)!*t^k/(1 - t)^(k+2) for k >= 2.
%F A143497 E.g.f: Sum_{n=2..inf} Sum_{k=2..n} T(n, k)*x^k*t^n/(n - 2)! = (x*t)^2/(1 - t)^4* exp(x*t/(1 - t)) = (x*t)^2*(1 + (4 + x)*t + (20 + 10*x + x^2)*t^2/2! + ... ).
%F A143497 Generalized Lah identity: (x + 3)*(x + 4)*...*(x + n) = Sum_{k = 2..n} T(n, k)*(x - 1)*(x - 2)*...*(x - k + 2).
%F A143497 The polynomials 1/n!*Sum_{k=2..n+2} T(n+2, k)*(-x)^(k - 2) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,3,x). See A062137.
%F A143497 Array = A143491 * A143494 = abs(A008275) * (A007318)^2 * A008277 (apply Theorem 10 of [Neuwirth]). Array equals exp(D), where D is the array with the quadratic sequence (4, 10, 18, 28, ...) on the main subdiagonal and zeros elsewhere.
%F A143497 After adding 1 to the head of the main diagonal and a zero to each of the subdiagonals, the n-th diagonal may be generated as coefficients of (1/n!) [D^(-1) tDt t^(-3)D t^3]^n exp(x*t), where D is the derivative w.r.t. t and D^(-1) t^j/j! = t^(j + 1)/(j + 1)!. E.g., n = 2 generates 20*x*t^3/3! + 90*x^2*t^4/4! + 252*x^3* t^5/5! + ... . For the general unsigned r-Lah number array, replace the threes by (2*r - 1) in the operator. The e.g.f. of the row polynomials is then exp[D^(-1) tDt t^(-(2*r-1))D t^(2*r - 1)] exp(x*t), with offset n = 0. - _Tom Copeland_, Sep 21 2008
%e A143497 Triangle begins:
%e A143497 =========================================
%e A143497 n\k |     2     3     4     5     6     7
%e A143497 ----+------------------------------------
%e A143497   2 |     1
%e A143497   3 |     4     1
%e A143497   4 |    20    10     1
%e A143497   5 |   120    90    18     1
%e A143497   6 |   840   840   252    28     1
%e A143497   7 |  6720  8400  3360   560    40     1
%e A143497  ...
%e A143497 T(4,3) = 10. The ten partitions of {1,2,3,4} into 3 ordered lists such that the elements 1 and 2 lie in different lists are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {1}{4}{2,3} and {1}{4}{3,2}, {2}{3}{1,4} and {2}{3}{4,1}, {2}{4}{1,3} and {2}{4}{3,1}. The remaining two partitions {3}{4}{1,2} and {3}{4}{2,1} are not allowed because the elements 1 and 2 belong to the same block.
%p A143497 T := (n, k) -> ((n-2)!/(k-2)!)*binomial(n+1, k+1):
%p A143497 for n from 2 to 11 do seq(T(n, k), k = 2..n) od;
%t A143497 T[n_, k_] := (n-2)!/(k-2)!*Binomial[n+1, k+1]; Table[T[n, k], {n,2,10}, {k,2,n}] // Flatten (* _Amiram Eldar_, Nov 27 2018 *)
%o A143497 (Maxima) create_list((n - 2)!/(k - 2)!*binomial(n + 1, k + 1), n, 2, 12, k, 2, n); /* _Franck Maminirina Ramaharo_, Nov 27 2018 */
%o A143497 (GAP) T:=Flat(List([2..10],n->List([2..n],k->(Factorial(n-2)/Factorial(k-2))*Binomial(n+1,k+1)))); # _Muniru A Asiru_, Nov 27 2018
%Y A143497 Cf. A001715 (column 2), A007318, A008275, A008277, A061206 (column 3), A062137, A062141 - A062144 ( column 4 to column 7), A062146 (alt. row sums), A062147 (row sums), A105278 (unsigned Lah numbers), A143491, A143494, A143498, A143499.
%K A143497 easy,nonn,tabl
%O A143497 2,2
%A A143497 _Peter Bala_, Aug 25 2008