This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143523 #11 Oct 09 2013 00:27:55 %S A143523 1,3,10,42,248,1992,19600,222288,2851712,41075328,658359040, %T A143523 11621260032,223832419328,4669549335552,104894256056320, %U A143523 2524539033397248,64811332658757632,1767891945806266368,51060500413513400320 %N A143523 a(n) = n-fold Dumont operator of x evaluated at x=y=1, z=3. %C A143523 The Dumont operator: D = y*z*dx + z*x*dy + x*y*dz is used to generate expansions for the Jacobi elliptic functions sn, cn and dn. %F A143523 E.g.f.: 2*r*(3-r)*exp(r*x)/(1 - (3-r)^2*exp(2*r*x)) where r=2*sqrt(2). %F A143523 E.g.f.: G'(x)/G(x) where G(x) is the e.g.f. of A080795 (number of minimax trees on n nodes). %F A143523 G.f.: 1/Q(0), where Q(k) = 1 - 3*x*(2*k+1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Sep 28 2013 %F A143523 a(n) ~ n! * 2^(5*(n+1)/2) / log(17+12*sqrt(2))^(n+1). - _Vaclav Kotesovec_, Oct 08 2013 %e A143523 Given the Dumont operator: D = y*z*dx + z*x*dy + x*y*dz, %e A143523 illustrate a(n) = D^n x evaluated at x=1, y=1, z=3: %e A143523 D^0 x = x --> a(0) = 1; %e A143523 D^1 x = y*z --> a(1) = 3; %e A143523 D^2 x = (y^2 + z^2)*x --> a(2) = 10; %e A143523 D^3 x = 4*z*y*x^2 + (z*y^3 + z^3*y) --> a(3) = 42; %e A143523 D^4 x = (4*y^2 + 4*z^2)*x^3 + (y^4 + 14*z^2*y^2 + z^4)*x --> a(4) = 248; %e A143523 D^5 x = 16*z*y*x^4 + (44*z*y^3 + 44*z^3*y)*x^2 + (z*y^5 + 14*z^3*y^3 + z^5*y) --> a(5) = 1992. %o A143523 (PARI) {a(n)=local(F=x);if(n>=0,for(i=1,n,F=y*z*deriv(F,x)+z*x*deriv(F,y)+x*y*deriv(F,z)));subst(subst(subst(F,x,1),y,1),z,3)} %o A143523 (PARI) {a(n)=local(r=2*sqrt(2)+x*O(x^n));round(n!*polcoeff(2*r*(3-r)*exp(r*x)/(1-(3-r)^2*exp(2*r*x)),n))} %Y A143523 Cf. A143522, A080795. %K A143523 nonn %O A143523 0,2 %A A143523 _Paul D. Hanna_, Aug 23 2008