cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143524 Decimal expansion of the (negated) constant in the expansion of the prime zeta function about s = 1.

This page as a plain text file.
%I A143524 #43 Feb 16 2025 08:33:08
%S A143524 3,1,5,7,1,8,4,5,2,0,5,3,8,9,0,0,7,6,8,5,1,0,8,5,2,5,1,4,7,3,7,0,6,5,
%T A143524 7,1,9,9,0,5,9,2,6,8,7,6,7,8,7,2,4,3,9,2,6,1,3,7,0,3,0,2,0,9,5,9,9,4,
%U A143524 3,2,1,5,8,8,0,2,9,6,4,6,1,2,2,2,8,0,4,4,3,1,8,5,7,5,0,0,0,9,8,4,6,3,0,1
%N A143524 Decimal expansion of the (negated) constant in the expansion of the prime zeta function about s = 1.
%C A143524 This constant appears in Franz Mertens's publication from 1874 on p. 58 (see link). - _Artur Jasinski_, Mar 17 2021
%D A143524 Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
%D A143524 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.2, p. 96.
%H A143524 Henri Cohen, <a href="http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi">High precision computation of Hardy-Littlewood constants</a>, preprint, 1998.
%H A143524 Henri Cohen, <a href="/A221712/a221712.pdf">High-precision computation of Hardy-Littlewood constants</a>. [pdf copy, with permission]
%H A143524 Carl-Erik Fröberg, <a href="https://doi.org/10.1007/BF01933420">On the prime zeta function</a>, BIT Numerical Mathematics, Vol. 8, No. 3 (1968), pp. 187-202.
%H A143524 R. J. Mathar, <a href="http://arxiv.org/abs/0803.0900">Series of reciprocal powers of k-almost primes</a>, arXiv:0803.0900 [math.NT], 2008-2009, Table 2.
%H A143524 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/3325234/1039170">Prime Zeta function at 1</a>
%H A143524 Franz Mertens, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002155656">Ein Beitrag zur analytischen Zahlentheorie</a>, J. Reine Angew. Math. 78 (1874), pp. 46-62 p. 58.
%H A143524 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>.
%H A143524 Wikipedia, <a href="https://en.wikipedia.org/wiki/Prime_zeta_function">Prime zeta function</a>.
%F A143524 Equals A077761 minus A001620. - _R. J. Mathar_, Jan 22 2009
%F A143524 From _Amiram Eldar_, Aug 08 2020: (Start)
%F A143524 Equals -Sum{k>=2} mu(k) * log(zeta(k)) / k.
%F A143524 Equals -Sum_{p prime} (1/p + log(1 - 1/p))
%F A143524 Equals Sum_{k>=2} P(k)/k, where P is the prime zeta function. (End)
%F A143524 P(s) = log(zeta(s)) - A143524 + o(1) = log(1/(s-1)) - A143524 + o(1) as s -> 1. - _Jianing Song_, Jan 10 2024
%e A143524 -0.315718452053890076851... [corrected by _Georg Fischer_, Jul 29 2021]
%t A143524 digits = 104; S = NSum[PrimeZetaP[n]/n, {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[S, 10, digits] // First (* _Jean-François Alcover_, Sep 11 2015 *)
%Y A143524 Cf. A001620, A077761.
%K A143524 nonn,cons
%O A143524 0,1
%A A143524 _Eric W. Weisstein_, Aug 22 2008
%E A143524 Digits changed to agree with A077761 and A001620 by _R. J. Mathar_, Oct 30 2009
%E A143524 Last digits corrected by _Jean-François Alcover_, Sep 11 2015