This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143547 #38 Jul 08 2025 07:41:30 %S A143547 1,1,1,4,7,34,70,368,819,4495,10472,59052,141778,814506,1997688, %T A143547 11633440,28989675,170574723,430321633,2552698720,6503352856, %U A143547 38832808586,99726673130,598724403680,1547847846090,9335085772194,24269405074740,146936230074004,383846168712104 %N A143547 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4*A(-x)^3. %C A143547 Number of achiral noncrossing partitions composed of n blocks of size 7. - _Andrew Howroyd_, Feb 08 2024 %H A143547 Andrew Howroyd, <a href="/A143547/b143547.txt">Table of n, a(n) for n = 0..500</a> %H A143547 Michel Bousquet and Cédric Lamathe, <a href="https://doi.org/10.46298/dmtcs.420">On symmetric structures of order two</a>, Discrete Math. Theor. Comput. Sci. 10 (2008), 153-176, See Table 1. - From _N. J. A. Sloane_, Jul 12 2011 %F A143547 G.f.: A(x) = G(x^2) + x*G(x^2)^4 where G(x^2) = A(x)*A(-x) and G(x) = 1 + x*G(x)^7 is the g.f. of A002296. %F A143547 a(2n) = binomial(7*n,n)/(6*n+1); a(2n+1) = binomial(7*n+3,n)*4/(6*n+4). %F A143547 G.f. satisfies: A(x)*A(-x) = (A(x) + A(-x))/2. %F A143547 a(0) = 1; a(n) = Sum_{i, j, k, l>=0 and i+2*j+2*k+2*l=n-1} a(i) * a(2*j) * a(2*k) * a(2*l). - _Seiichi Manyama_, Jul 07 2025 %F A143547 a(0) = 1; a(n) = Sum_{x_1, x_2, ..., x_7>=0 and x_1+x_2+...+x_7=n-1} (-1)^(x_1+x_2+x_3) * Product_{k=1..7} a(x_k). - _Seiichi Manyama_, Jul 08 2025 %e A143547 G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 7*x^4 + 34*x^5 + 70*x^6 + 368*x^7 + ... %e A143547 Let G(x) = 1 + x*G(x)^7 be the g.f. of A002296, then %e A143547 A(x)*A(-x) = G(x^2) and A(x) = G(x^2) + x*G(x^2)^4 where %e A143547 G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 + ... %e A143547 G(x)^4 = 1 + 4*x + 34*x^2 + 368*x^3 + 4495*x^4 + 59052*x^5 + ... %e A143547 form the bisections of A(x). %e A143547 By definition, A(x) = 1 + x*A(x)^4*A(-x)^3 where %e A143547 A(x)^4 = 1 + 4*x + 10*x^2 + 32*x^3 + 95*x^4 + 332*x^5 + 1074*x^6 + ... %e A143547 A(-x)^3 = 1 - 3*x + 6*x^2 - 19*x^3 + 51*x^4 - 183*x^5 + 550*x^6 -+ ... %t A143547 terms = 26; %t A143547 A[_] = 1; Do[A[x_] = 1 + x A[x]^4 A[-x]^3 + O[x]^terms // Normal, {terms}]; %t A143547 CoefficientList[A[x], x] (* _Jean-François Alcover_, Jul 24 2018 *) %o A143547 (PARI) {a(n)=my(A=1+O(x^(n+1)));for(i=0,n,A=1+x*A^4*subst(A^3,x,-x));polcoef(A,n)} %o A143547 (PARI) {a(n)=my(m=n\2,p=3*(n%2)+1);binomial(7*m+p-1,m)*p/(6*m+p)} %Y A143547 Column k=7 of A369929 and k=8 of A370062. %Y A143547 Cf. A002296 (bisection), A143546. %Y A143547 Cf. A143549, A143550. %Y A143547 Cf. A143046, A143553. %K A143547 nonn %O A143547 0,4 %A A143547 _Paul D. Hanna_, Aug 23 2008 %E A143547 a(26) onwards from _Andrew Howroyd_, Feb 08 2024