This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143601 #26 Mar 04 2024 11:52:13 %S A143601 1,1,13,541,47545,7231801,1695106117,567547087381,257320926233329, %T A143601 151856004814953841,113144789723082206461,103890621918675777804301, %U A143601 115270544419577901796226473,152049571406030636219959644841 %N A143601 Number of labeled odd-degree trees with 2n+1 nodes. %H A143601 Seiichi Manyama, <a href="/A143601/b143601.txt">Table of n, a(n) for n = 0..211</a> %F A143601 E.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas. %F A143601 (1) A(x) = cosh(x*A(x)). %F A143601 (2) A(x) = (1/x)*Series_Reversion( x/cosh(x) ). %F A143601 (3) sqrt(A(x)^2 - 1) = e.g.f. of A007106. %F A143601 (4) exp(x*A(x)) = A(x) + sqrt(A(x)^2-1) = e.g.f. of A058014. %F A143601 (5) A(x) = [F(x) + F(-x)]/2 where F(x) = exp(x*[F(x) + 1/F(x)]/2) = e.g.f. of A058014. %F A143601 (6) A(2*x) = [G(x)/G(-x) + G(-x)/G(x)]/2 where G(x) = exp(x*G(x)/G(-x)) = e.g.f. of A143600. %F A143601 From _Paul D. Hanna_, Aug 29 2008: (Start) %F A143601 (7) A(x/cosh(x)) = cosh(x). %F A143601 (8) a(n) = (2n)!*[x^(2n)] cosh(x)^(2n+1)/(2n+1). (End) %F A143601 (9) a(n) = Sum_{k=0..n} binomial(2*n+1,k) * (2*n+1 - 2*k)^(2*n) / ((2*n+1) * 2^(2*n)). [See formula by _Christophe Vignat_ in A309204.] - _Paul D. Hanna_, Feb 19 2024 %F A143601 a(n) ~ 2^(2*n) * n^(2*n-1) * (s^2-1)^(n+1/2) / exp(2*n), where s = 1.810170580698977274512829... is the root of the equation sqrt(s^2-1) * log(s + sqrt(s^2-1)) = s. - _Vaclav Kotesovec_, Jan 10 2014 %F A143601 Radius of convergence r = 0.66274341934918158097474... = 1/sqrt(s^2-1) and A(r) = s (given above) satisfy r = 1/sinh(r*A(r)) and A(r) = cosh(r*A(r)). - _Paul D. Hanna_, Mar 04 2024 %e A143601 E.g.f.: A(x) = 1 + x^2/2! + 13*x^4/4! + 541*x^6/6! + 47545*x^8/8! + ... %e A143601 The e.g.f. of A007106 (a bisection of A058014) is given by: %e A143601 sqrt(A(x)^2 - 1) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + 686080*x^9/9! + ... %e A143601 The e.g.f. of A058014 is given by: %e A143601 F(x) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 96*x^5/5! + 541*x^6/6! + ... %e A143601 where A(x) = [F(x) + F(-x)]/2 and exp(x*A(x)) = F(x). %e A143601 The e.g.f. of A143600 is given by: %e A143601 G(x) = 1 + x + 5*x^2/2! + 25*x^3/3! + 249*x^4/4! + 2561*x^5/5! + ... %e A143601 where A(2x) = [G(x)/G(-x) + G(-x)/G(x)]/2. %t A143601 Table[(2*n)!*CoefficientList[1/x*InverseSeries[Series[x/Cosh[x],{x,0,41}],x],x][[2*n+1]],{n,0,20}] (* _Vaclav Kotesovec_, Jan 10 2014 *) %o A143601 (PARI) {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=cosh(x*A));n!*polcoeff(A,n)} %o A143601 (PARI) {a(n)=(2*n)!*polcoeff(cosh(x+x*O(x^(2*n)))^(2*n+1)/(2*n+1),2*n)} \\ _Paul D. Hanna_, Aug 29 2008 %o A143601 (PARI) {a(n) = sum(k=0,n, binomial(2*n+1,k) * (2*n+1-2*k)^(2*n) / ((2*n+1) * 2^(2*n)) )} %o A143601 for(n=0,30, print1(a(n),", ")) \\ _Paul D. Hanna_, Feb 19 2024 %Y A143601 Cf. A058014, A143600, A007106, A309204. %Y A143601 Cf. A370430, A370432. %K A143601 nonn %O A143601 0,3 %A A143601 _Paul D. Hanna_, Aug 26 2008, May 27 2009 %E A143601 Edited by _Paul D. Hanna_, May 27 2009