This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143603 #20 Jul 06 2023 01:58:02 %S A143603 1,1,1,3,3,1,12,12,5,1,55,55,25,7,1,273,273,130,42,9,1,1428,1428,700, %T A143603 245,63,11,1,7752,7752,3876,1428,408,88,13,1,43263,43263,21945,8379, %U A143603 2565,627,117,15,1,246675,246675,126500,49588,15939,4235,910,150,17,1 %N A143603 Triangle, read by rows, such that the g.f. of column k = G(x)^(2k+1) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 (ternary trees). %C A143603 From _Peter Bala_, Aug 07 2014: (Start) %C A143603 Riordan array (G(x), x*G(x)). Let C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + ... be the o.g.f. of the Catalan numbers A000108. Then C(x*G(x)) = G(x). %C A143603 This leads to a factorization of this array in the group of Riordan matrices as (1, x*G(x))*(C(x), x*C(x)) = (1 + A110616)*A033184 (here, in the final product, 1 refers to the 1 X 1 identity matrix and + means direct sum - see the Example section). (End) %H A143603 Yuxuan Zhang and Yan Zhuang, <a href="https://arxiv.org/abs/2306.15778">A subfamily of skew Dyck paths related to k-ary trees</a>, arXiv:2306.15778 [math.CO], 2023. %F A143603 T(n,k) = C(3n-k,n-k)*(2k+1)/(2n+1) for 0<=k<=n. %F A143603 Let M = the production matrix: %F A143603 1, 1 %F A143603 2, 2, 1 %F A143603 3, 3, 2, 1 %F A143603 4, 4, 3, 2, 1 %F A143603 5, 5, 4, 3, 2, 1 %F A143603 ... %F A143603 Top row of M^(n-1) gives n-th row. - _Gary W. Adamson_, Jul 07 2011 %e A143603 Triangle begins: %e A143603 1; %e A143603 1, 1; %e A143603 3, 3, 1; %e A143603 12, 12, 5, 1; %e A143603 55, 55, 25, 7, 1; %e A143603 273, 273, 130, 42, 9, 1; %e A143603 1428, 1428, 700, 245, 63, 11, 1; %e A143603 7752, 7752, 3876, 1428, 408, 88, 13, 1; ... %e A143603 where g.f. of column k = G(x)^(2k+1) where G(x) = 1 + x*G(x)^3. %e A143603 Matrix inverse begins: %e A143603 1; %e A143603 -1, 1; %e A143603 0, -3, 1; %e A143603 0, 3, -5, 1; %e A143603 0, -1, 10, -7, 1; %e A143603 0, 0, -10, 21, -9, 1; %e A143603 0, 0, 5, -35, 36, -11, 1; %e A143603 0, 0, -1, 35, -84, 55, -13, 1; ... %e A143603 where g.f. of column k = (1-x)^(2k+1) for k>=0. %e A143603 From _Peter Bala_, Aug 07 2014: (Start) %e A143603 Matrix factorization as (1 + A110616)*A033184 begins %e A143603 /1 \/ 1 \ / 1 \ %e A143603 |0 1 || 1 1 | | 1 1 | %e A143603 |0 1 1 || 2 2 1 | = | 3 3 1 | %e A143603 |0 3 2 1 || 5 5 3 1 | |12 12 5 1 | %e A143603 |0 12 7 3 1 ||14 14 9 4 1 | |55 55 25 7 1 | %e A143603 (End) %o A143603 (PARI) {T(n,k)=binomial(3*n-k,n-k)*(2*k+1)/(2*n+1)} %Y A143603 Cf. columns: A001764, A102893, A102594; row sums: A006013. A033184, A110616. %K A143603 nonn,tabl %O A143603 1,4 %A A143603 _Paul D. Hanna_, Aug 29 2008