This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143619 #26 Sep 08 2022 08:45:37 %S A143619 1,0,1,0,1,0,1,1,1,2,1,3,2,4,3,5,5,6,8,9,12,13,17,19,24,28,34,41,49, %T A143619 59,71,86,103,124,149,179,215,259,311,375,450,542,651,784,942,1133, %U A143619 1363,1638,1971,2369,2851,3427,4123,4957,5962,7170,8622,10370,12470,14998,18035,21691,26085,31371 %N A143619 Expansion of 1/(1 - x^2 - x^7 - x^12 + x^14) (a Salem polynomial). %C A143619 Low growth rate of 1.20262... .The absolute values of the roots of the polynomial are 0.8315201041..., 1.2026167436..., and 1.0 (with multiplicity 12). The polynomial is self-reciprocal. - _Joerg Arndt_, Nov 03 2012 %H A143619 G. C. Greubel, <a href="/A143619/b143619.txt">Table of n, a(n) for n = 0..1000</a> %H A143619 <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,0,0,1,0,0,0,0,1,0,-1). %F A143619 G.f.: 1/(1 - x^2 - x^7 - x^12 + x^14). - _Colin Barker_, Nov 03 2012 %F A143619 a(n) = a(n-2) + a(n-7) + a(n-12) - a(n-14). - _Franck Maminirina Ramaharo_, Nov 02 2018 %t A143619 CoefficientList[Series[1/(1 - x^2 - x^7 - x^12 + x^14), {x, 0, 50}], x] %t A143619 LinearRecurrence[{0,1,0,0,0,0,1,0,0,0,0,1,0,-1},{1,0,1,0,1,0,1,1,1,2,1,3,2,4},70] (* _Harvey P. Dale_, Aug 08 2022 *) %o A143619 (PARI) x='x+O('x^50); Vec(1/(1-x^2-x^7-x^12+x^14)) \\ _G. C. Greubel_, Nov 03 2018 %o A143619 (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 -x^2-x^7-x^12+x^14))); // _G. C. Greubel_, Nov 03 2018 %Y A143619 Cf. A029826, A117791, A143419, A143438, A143472, A143644, A147663, A173908, A173911, A173924, A173925, A174522, A175740, A175772, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225482, A225499. %K A143619 nonn,easy %O A143619 0,10 %A A143619 _Roger L. Bagula_ and _Gary W. Adamson_, Oct 26 2008 %E A143619 New name from _Colin Barker_ and _Joerg Arndt_, Nov 03 2012