This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143631 #20 Feb 16 2025 08:33:08 %S A143631 0,1,1,1,0,-9,-64,-348,-1672,-7307,-28225,-81817,14191,3143571, %T A143631 38184875,353727284,2916494333,22260343389,157677357255,1007259846130, %U A143631 5241783274713,12146415146776,-210638381350012,-4813155361775252 %N A143631 Let A(0) = 1, B(0) = 0 and C(0) = 0. Let A(n+1) = - Sum_{k = 0..n} binomial(n,k)*C(k), B(n+1) = Sum_{k = 0..n} binomial(n,k)*A(k) and C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k). This entry gives the sequence B(n). %C A143631 The other sequences are A(n) = A143628(n) and C(n) = A143630(n). Compare with A121867 and A121868. See also A143816. %H A143631 Seiichi Manyama, <a href="/A143631/b143631.txt">Table of n, a(n) for n = 0..578</a> %H A143631 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>. %F A143631 a(n) = A143629(n) + A143630(n). %F A143631 From _Seiichi Manyama_, Oct 15 2022: (Start) %F A143631 a(n) = Sum_{k = 0..floor((n-1)/3)} (-1)^k * Stirling2(n,3*k+1). %F A143631 a(n) = -( Bell_n(-1) + w^2 * Bell_n(-w) + w * Bell_n(-w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). (End) %p A143631 # Compare with A143816 %p A143631 # %p A143631 M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100): %p A143631 a[0]:=1: b[0]:=0: c[0]:=0: %p A143631 for n from 1 to M do %p A143631 a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1); %p A143631 b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1); %p A143631 c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1); %p A143631 end do: %p A143631 A143631:=[seq(b[n], n=0..M)]; %t A143631 m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, b[n] = -Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]; a[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]]; A143631 = Table[ -b[n], {n, 0, m}] (* _Jean-François Alcover_, Mar 06 2013, after Maple *) %o A143631 (PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!); %o A143631 a(n) = my(w=(-1+sqrt(3)*I)/2); -round(Bell_poly(n, -1)+w^2*Bell_poly(n, -w)+w*Bell_poly(n, -w^2))/3; \\ _Seiichi Manyama_, Oct 15 2022 %Y A143631 A121867, A121868, A143628, A143629, A143630, A143816. %K A143631 easy,sign %O A143631 0,6 %A A143631 _Peter Bala_, Sep 05 2008