This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143632 #16 Feb 24 2019 17:05:53 %S A143632 1,1,1,1,1,1,1,1,3,1,1,1,3,16,1,1,1,3,19,125,1,1,1,3,22,185,1296,1,1, %T A143632 1,3,25,253,2541,16807,1,1,1,3,28,329,4256,45787,262144,1,1,1,3,31, %U A143632 413,6471,96727,1037359,4782969,1,1,1,3,34,505,9216,175747,2828274,28649553,100000000,1 %N A143632 Table T(n,k), n>=0, k>=0, read by antidiagonals, where the e.g.f. for column k satisfies A_k(x) = exp(x*A_k(((x+1)^k-1)/k)) if k>0 and A_0(x) = exp(x*A_0(0)) = exp(x). %H A143632 Alois P. Heinz, <a href="/A143632/b143632.txt">Antidiagonals n = 0..99, flattened</a> %e A143632 Table begins: %e A143632 1, 1, 1, 1, 1, 1, ... %e A143632 1, 1, 1, 1, 1, 1, ... %e A143632 1, 3, 3, 3, 3, 3, ... %e A143632 1, 16, 19, 22, 25, 28, ... %e A143632 1, 125, 185, 253, 329, 413, ... %e A143632 1, 1296, 2541, 4256, 6471, 9216, ... %p A143632 A:= proc(n,k) option remember; if n<=0 or k=0 then 1 else A(n-1,k)(((x+1)^k-1)/k) fi; unapply(convert(series(exp(x*%), x,n+1), polynom), x) end: T:= (n,k)-> coeff(A(n,k)(x), x,n)*n!: seq(seq(T(n,d-n), n=0..d), d=0..11); %t A143632 a[n_, k_][x_] := Module[{f}, f = If[n <= 0 || k == 0, 1, a[n-1, k][((#+1)^k-1)/k]]&; Normal[Series[Exp[y*f[y]], {y, 0, n+1}]] /. y -> x]; t[n_, k_] := Coefficient[a[n, k][x], x, n]*n!; Table[t[n, d-n], {d, 0, 11}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 12 2014, translated from Maple *) %Y A143632 Columns k=0-9 give: A000012, A000272, A143633, A143634, A143635, A143636, A143637, A143638, A143639, A143640. %Y A143632 Main diagonal gives A306578. %K A143632 nonn,tabl %O A143632 0,9 %A A143632 _Alois P. Heinz_, Aug 27 2008