This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143641 #27 Sep 28 2023 08:17:05 %S A143641 212159,595631,872897,1203623,1293671,1566691,1702357,1830661,3716213, %T A143641 3964169,4103917,4134953,4173921,4310617,4376703,4586509,4703801, %U A143641 4749187,4801387,4928909,5005353,5051179,5231739,5258901,5317573 %N A143641 Odd prime-proof numbers (A118118) not ending in 5. %C A143641 Most "prime-proof" numbers are even or multiples of 5, cf. A118118. %C A143641 Nicol & Selfridge proved that this sequence is infinite. - _Charles R Greathouse IV_, Jan 27 2014 %H A143641 Michael S. Branicky, <a href="/A143641/b143641.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..3655 from Klaus Brockhaus) %H A143641 Michael Filaseta, Mark Kozek, Charles Nicol and John Selfridge, <a href="http://www.math.sc.edu/~filaseta/papers/FKNSpaper0808.pdf">Composites that remain composite after changing a digit</a>, Journal of Combinatorics and Number Theory 2 (2011), pp. 25-36. %H A143641 Project Euler, <a href="http://projecteuler.net/problem=200">Problem 200: Prime-proof Squbes</a> (2008). %o A143641 (PARI) forstep( i=1,10^7,2, i%5 || next; isA118118(i) && print1(i",")) %o A143641 (Magma) IsA143641:=function(n); D:=Intseq(n); return Intseq(n)[1] ne 5 and forall{ <k, j>: k in [1..#D], j in [0..9] | not IsPrime(Seqint(Insert(D, k, k, [j]))) }; end function; [ n: n in [1..4000000 by 2] | IsA143641(n) ]; // _Klaus Brockhaus_, Mar 03 2011 %o A143641 (Python) %o A143641 from sympy import isprime %o A143641 from itertools import count, islice %o A143641 def selfplusneighs(n): %o A143641 s = str(n); d = "0123456789"; L = len(s) %o A143641 yield from (int(s[:i]+c+s[i+1:]) for c in d for i in range(L)) %o A143641 def agen(): %o A143641 for n in count(1, 2): %o A143641 if n%5 == 0: continue %o A143641 if all(not isprime(k) for k in selfplusneighs(n)): %o A143641 yield n %o A143641 print(list(islice(agen(), 8))) # _Michael S. Branicky_, Aug 16 2022 %Y A143641 Cf. A118118. %K A143641 base,nonn %O A143641 1,1 %A A143641 _M. F. Hasler_, Aug 27 2008, Sep 04 2008