cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143651 (0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, 13, ...) becomes (0^1 + 2, 3^2 + 2, 5^2 + 3, 7^2 + 3, 3^2 + 2, 5^11 + 2, 2^3 + 13, ...).

Original entry on oeis.org

2, 11, 28, 52, 11, 48828127, 21, 131, 29, 292, 524290, 35, 60, 532, 245, 8195, 11, 3219905755813179726837609, 274, 35, 138, 78127, 10, 1388, 1594325, 284, 15, 1851, 1333, 48, 2213, 2189, 34, 129140165, 8245, 11, 48828127, 2190, 390, 3483, 304
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 01 2008

Keywords

Examples

			0^1 + 2 = 0 + 2 = 2 = a(1).
3^2 + 2 = 9 + 2 = 11 = a(2).
5^2 + 3 = 25 + 3 = 28 = a(3).
7^2 + 3 = 49 + 3 = 52 = a(4).
3^2 + 2 = 9 + 2 = 11 = a(5).
5^11 + 2 = 48828125 + 2 = 48828127 = a(6).
2^3 + 13 = 8 + 13 = 21 = a(7).
2^7 + 3 = 128 + 3 = 131 = a(8), etc.
		

Crossrefs

Programs

  • Maple
    pflat2 := proc(nmax) local a, ifs, n, p, c ; a := [0,1] ; for n from 2 to nmax do ifs := ifactors(n)[2] ; for p in ifs do a := [op(a),op(1,p)] ; if op(2,p) > 1 then a := [op(a),op(2,p)] ; fi; od: od: a ; end: pL := pflat2(120) : for n from 1 to nops(pL)-4 by 3 do printf("%d,", op(n, pL)^op(n+1, pL)+op(n+2,pL) ) ; od: # R. J. Mathar, Nov 06 2008

Extensions

a(11) corrected, extended by R. J. Mathar, Nov 06 2008