A143651 (0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, 13, ...) becomes (0^1 + 2, 3^2 + 2, 5^2 + 3, 7^2 + 3, 3^2 + 2, 5^11 + 2, 2^3 + 13, ...).
2, 11, 28, 52, 11, 48828127, 21, 131, 29, 292, 524290, 35, 60, 532, 245, 8195, 11, 3219905755813179726837609, 274, 35, 138, 78127, 10, 1388, 1594325, 284, 15, 1851, 1333, 48, 2213, 2189, 34, 129140165, 8245, 11, 48828127, 2190, 390, 3483, 304
Offset: 1
Keywords
Examples
0^1 + 2 = 0 + 2 = 2 = a(1). 3^2 + 2 = 9 + 2 = 11 = a(2). 5^2 + 3 = 25 + 3 = 28 = a(3). 7^2 + 3 = 49 + 3 = 52 = a(4). 3^2 + 2 = 9 + 2 = 11 = a(5). 5^11 + 2 = 48828125 + 2 = 48828127 = a(6). 2^3 + 13 = 8 + 13 = 21 = a(7). 2^7 + 3 = 128 + 3 = 131 = a(8), etc.
Programs
-
Maple
pflat2 := proc(nmax) local a, ifs, n, p, c ; a := [0,1] ; for n from 2 to nmax do ifs := ifactors(n)[2] ; for p in ifs do a := [op(a),op(1,p)] ; if op(2,p) > 1 then a := [op(a),op(2,p)] ; fi; od: od: a ; end: pL := pflat2(120) : for n from 1 to nops(pL)-4 by 3 do printf("%d,", op(n, pL)^op(n+1, pL)+op(n+2,pL) ) ; od: # R. J. Mathar, Nov 06 2008
Extensions
a(11) corrected, extended by R. J. Mathar, Nov 06 2008