This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143652 #7 Oct 05 2015 02:59:24 %S A143652 0,81,3125,16807,81,1220703125,65536,1024,15625,1419857,2097152,256, %T A143652 96889010407,6436343,2187,65536,81,157775382034845806615042743, %U A143652 150094635296999121,256,61159090448414546291,1953125,32 %N A143652 (0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, 13, ...) becomes (0^(1+2), 3^(2+2), 5^(2+3), 7^(2+3), 3^(2+2), 5^(11+2), 2^(3+13), ...). %e A143652 0^(1 + 2) = 0^3 = 0 = a(1). %e A143652 3^(2 + 2) = 3^4 = 81 = a(2). %e A143652 5^(2 + 3) = 5^5 = 3125 = a(3). %e A143652 7^(2 + 3) = 7^5 = 16807 = a(4). %e A143652 3^(2 + 2) = 3^4 = 81 = a(5). %e A143652 5^(11 + 2) = 5^13 = 1220703125 = a(6). %e A143652 2^(3 + 13) = 2^16 = 65536 = a(7). %e A143652 2^(7 + 3) = 2^10 = 1024 = a(8), etc. %p A143652 pflat2 := proc(nmax) local a, ifs, n, p, c ; a := [0,1] ; for n from 2 to nmax do ifs := ifactors(n)[2] ; for p in ifs do a := [op(a),op(1,p)] ; if op(2,p) > 1 then a := [op(a),op(2,p)] ; fi; od: od: a ; end: pL := pflat2(120) : for n from 1 to nops(pL)-4 by 3 do printf("%d,", op(n, pL)^(op(n+1, pL)+op(n+2,pL)) ) ; od: # _R. J. Mathar_, Nov 06 2008 %Y A143652 Cf. A141269, A141270. %K A143652 nonn %O A143652 1,2 %A A143652 _Juri-Stepan Gerasimov_, Nov 01 2008 %E A143652 Extended by _R. J. Mathar_, Nov 06 2008