cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143670 Array of higher spin alternating sign matrices, read by antidiagonals.

This page as a plain text file.
%I A143670 #20 Jan 28 2022 07:44:02
%S A143670 1,1,1,1,2,1,1,7,3,1,1,42,26,4,1,1,429,628,70,5,1,1,7436,41784,5102,
%T A143670 155,6,1,1,218348,7517457,1507128,28005
%N A143670 Array of higher spin alternating sign matrices, read by antidiagonals.
%C A143670 Adapted from Table 1, p. 5: |ASM(n, r)|, where A[k,n] = |ASM(n, k)|. Abstract: We define a higher spin alternating sign matrix to be an integer-entry square matrix in which, for a nonnegative integer r, all complete row and column sums are r and all partial row and column sums extending from each end of the row or column are nonnegative. Such matrices correspond to configurations of spin r/2 statistical mechanical vertex models with domain-wall boundary conditions.
%C A143670 The case r = 1 gives standard alternating sign matrices, while the case in which all matrix entries are nonnegative gives semimagic squares. We show that the higher spin alternating sign matrices of size n are the integer points of the r-th dilate of an integral convex polytope of dimension (n-1)^2 whose vertices are the standard alternating sign matrices of size n. It then follows that, for fixed n, these matrices are enumerated by an Ehrhart polynomial in r.
%H A143670 Roger E. Behrend and Vincent A. Knight, <a href="http://arxiv.org/abs/0708.2522">Higher Spin Alternating Sign Matrices</a>, arXiv:0708.2522 [math.CO], 2007.
%H A143670 Roger E. Behrend, Vincent A. Knight, <a href="https://doi.org/10.37236/1001">Higher Spin Alternating sign matrices</a>, El. J. Combinat 14 (2007) #R83
%F A143670 Apart from the trivial formulas |ASM(0, n)| = 1 (since ASM(0, n) contains only the n X n zero matrix), |ASM(1, r)| = 1 and |ASM(2, r)| = r+1, the only previously- known formula for a special case of |ASM(n, r)| is |ASM(n, 1)| = Sum_{i=0..n-1} (3*i+1)!/(n+1)!.
%e A143670 The array begins:
%e A143670 ========================================================
%e A143670 ....|.r=0|..r=1.|.....r=2.|.......r=3.|..........r=4.|
%e A143670 n=1.|..1.|...1..|......1..|.........1.|...........1..|.A000012
%e A143670 n=2.|..1.|...2..|......3..|.........4.|...........5..|.A000027
%e A143670 n=3.|..1.|...7..|.....26..|........70.|.........155..|
%e A143670 n=4.|..1.|..42..|....628..|......5102.|.......28005..|
%e A143670 n=5.|..1.|.429..|..41784..|...1507128.|....28226084..|
%e A143670 n=6.|..1.|7436..|7517457..|1749710096.|152363972022..|
%e A143670 ========================================================
%Y A143670 Cf. A000012, A000027, A005130.
%K A143670 more,nonn,tabl
%O A143670 1,5
%A A143670 _Jonathan Vos Post_, Aug 28 2008
%E A143670 Some terms of the 7th diagonal from _R. J. Mathar_, Mar 04 2010