cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143672 Number of chains (totally ordered subsets) in the poset of Dyck paths ordered by inclusion.

This page as a plain text file.
%I A143672 #31 Jan 10 2015 08:59:11
%S A143672 1,2,4,24,816,239968,808814912,38764383658368,31491961129357837056,
%T A143672 503091371552266970507912704,179763631086276515267399940231898112,
%U A143672 1609791936564515363272979180683040232936253440
%N A143672 Number of chains (totally ordered subsets) in the poset of Dyck paths ordered by inclusion.
%C A143672 For each n, each vertex in the Hasse diagram of the poset corresponds to a Dyck path of size n. The chain polynomial, C(P,t)=(1 + sum_k(c_k*t^(k+1)), gives the breakdown of this sequence by number of vertices in the chain. The 1 in front of the sum in this equation denotes the empty chain. The coefficient, c_k, gives the number of chains of length k and the exponent, (k+1), indicates the number of vertices in the chain. Here are the chain polynomials corresponding to this sequence:
%C A143672 n=0 1
%C A143672 n=1 1 + t
%C A143672 n=2 1 + 2t + t^2
%C A143672 n=3 1 + 5t + 9t^2 + 7t^3 + 2t^4
%C A143672 n=4 1 + 14t + 70t^2 + 176 t^3+249t^4 + 202t^5 + 88 t^6 + 16 t^7
%C A143672 n=5 1 + 42t + 552t^2 + 3573t^3 + 13609t^4+ 33260 t^5 + 54430t^6 + 60517t^7 + 45248t^8 + 21824t^9 + 6144t^(10) + 768t^(11)
%C A143672 Note that for each n, the coefficient of t is equal to the Catalan number, C_n. It is well-known that the number of Dyck paths in D_n is given by C_n (A000108). The coefficient in front of the largest power of t gives the number of maximal (and also maximum) chains (A005118).
%D A143672 R. P. Stanley, Enumerative Combinatorics 1, Cambridge University Press, New York, 1997.
%H A143672 J. Woodcock, <a href="http://garsia.math.yorku.ca/~zabrocki/dyckpathposet.html">Properties of the poset of Dyck paths ordered by inclusion</a>
%F A143672 a(n) = 1 + Sum_{i,j in {1..C(n)}} (2*delta - zeta)^(-1)[i,j] where delta is the identity matrix and the zeta matrix is defined: zeta[a,b] = 1 if a<=b in D_n and 0 otherwise.
%e A143672 a(3) = 24 since in D_3 there are 2 chains of length 3 (i.e., on 4 vertices in the Hasse diagram), 7 chains of length 2 (on 3 vertices), 9 chains of length 1 (on 2 vertices), 5 chains of length 0 (on 1 vertex) and the empty chain: 2 + 7 + 9 + 5 + 1 = 24 chains.
%p A143672 d:= proc(x, y, l) option remember;
%p A143672       `if`(x=1, [[l[], y]], [seq(d(x-1, i, [l[], y])[], i=x-1..y)])
%p A143672     end:
%p A143672 le:= proc(l1, l2) local i;
%p A143672        for i to nops(l1) do if l1[i]>l2[i] then return false fi od;
%p A143672        true
%p A143672      end:
%p A143672 a:= proc(n) option remember; local l, m, g;
%p A143672       if n=0 then return 1 fi;
%p A143672       l:= d(n, n, []); m:= nops(l);
%p A143672       g:= proc(t) option remember;
%p A143672             1 +add(`if`(le(l[d], l[t]), g(d), 0), d=1..t-1);
%p A143672           end;
%p A143672       1+ add(g(h), h=1..m)
%p A143672     end:
%p A143672 seq(a(n), n=0..7);  # _Alois P. Heinz_, Jul 26 2011
%Y A143672 Cf. A143673, A143674, A193629. Chains on one vertex: A000108. Number of maximal chains: A005118.
%K A143672 nonn
%O A143672 0,2
%A A143672 Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Aug 28 2008
%E A143672 a(6)-a(11), from _Alois P. Heinz_, Jul 26 2011, Aug 01 2011