A143728 Triangle read by rows: termwise product of mu(n) and n-th row of A127368.
1, 1, 0, 1, -2, 0, 1, 0, -3, 0, 1, -2, -3, 0, 0, 1, 0, 0, 0, -5, 0, 1, -2, -3, 0, -5, 6, 0, 1, 0, -3, 0, -5, 0, -7, 0, 1, -2, 0, 0, -5, 0, -7, 0, 0, 1, 0, -3, 0, 0, 0, -7, 0, 0, 0, 1, -2, -3, 0, -5, 6, -7, 0, 0, 10, 0, 1, 0, 0, 0, -5, 0, -7, 0, 0, 0, -11, 0, 1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, 0
Offset: 1
Examples
First few terms of the triangle: 1; 1, 0; 1, -2, 0; 1, 0, -3, 0; 1, -2, -3, 0, 0; 1, 0, 0, 0, -5, 0; 1, -2, -3, 0, -5, 6, 0; 1, 0, -3, 0, -5, 0, -7, 0; ... Example: row 7 = (1, -2, -3, 0, -5, 6, 0). We take row 7 of triangle A127368 which records the relative primes of 7 as (1, 2, 3, 4, 5, 6, 0). Applying the termwise product of the first 7 terms of mu(k): (1, -1, -1, 0, -1, 1, -1), we get (1, -2, -3, 0, -5, 6, 0), noting that the "4" has been deleted.
Formula
Extensions
Partially edited by N. J. A. Sloane, Jan 05 2009
a(66) = 0 inserted by Georg Fischer, Jun 05 2023
Comments