A143796 Ackermann function, defined recursively by A(0,n) = n+1, A(m+1,0) = A(m,1), A(m+1,n+1) = A(m,A(m+1,n)) for any nonnegative integers n, m. Table read by antidiagonals, the second term being A(0,1).
1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 7, 13, 13, 6, 6, 9, 29, 65533, 65533, 7, 7, 11, 61
Offset: 0
References
- R. Peter, Rekursive Funktionen in der Komputer-Theorie. Budapest: Akad. Kiado, 1951.
Links
- W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928), 118-133.
- R. C. Buck, Mathematical induction and recursive definitions, Amer. Math. Monthly, 70 (1963), 128-135.
- E. Weisstein, Mathworld, Ackermann function.
- Wikipedia, Ackermann function.
Formula
A(1,n) = 2+(n+3) - 3 = n + 2.
A(2,n) = 2*(n+3) - 3 = 2n + 3.
A(3,n) = 2^(n+3) - 3.
A(4,n) = 2^^(n+3)- 3 (a power tower of n+3 two's).
Comments