A143797 Ackermann-Buck function, defined recursively by A(0,n) = n+1, A(1,0) = 2, A(2,0) = 0, A(n+3,0) = 1, A(m+1,n+1) = A(m,A(m+1,n)) for any nonnegative integers n, m. Table read by antidiagonals, the second term being A(0,1).
1, 2, 2, 3, 3, 0, 4, 4, 2, 1, 5, 5, 4, 2, 1, 6, 6, 6, 4, 2, 1, 7, 7, 8, 8, 4, 2, 1, 8, 8, 10, 16, 16, 4, 2, 1, 9, 9, 12, 32, 65536, 65536, 4, 2, 1, 10, 10, 14, 64
Offset: 0
References
- R. Peter, Rekursive Funktionen in der Komputer-Theorie. Budapest: Akad. Kiado, 1951.
Links
- W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928), 118-133.
- G. Boolos, A curious inference, Journal of Philosophical Logic 16 (1987), 1-12.
- R. C. Buck, Mathematical induction and recursive definitions, Amer. Math. Monthly, 70 (1963), 128-135.
- Eric Weisstein's World of Mathematics, Ackermann function.
- Wikipedia, Ackermann function.
Formula
T(n,0) = 1 if n>=3.
T(n,1) = 2 if n>=2.
T(n,2) = 4 if n>=1.
T(1,n) = 2+n.
T(2,n) = 2*n.
T(3,n) = 2^n.
T(4,n) = 2^^n (a power tower of n two's) = A014221(n+1).
Comments