This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143803 #13 May 04 2024 14:29:48 %S A143803 1,3,7,9,13,17,19,23,27,31,33,37,41,45,49,51,55,59,63,67,71,73,77,81, %T A143803 85,89,93,97,99,103,107,111,115,119,123,127,129,133,137,141,145,149, %U A143803 153,157,161,163,167,171,175,179,183,187,191,195,199 %N A143803 a(n) = 2*A001614(n) - 1 where A001614 lists the Connell numbers. %C A143803 Row sums = A059722: (1, 10, 39, 100, ...). %C A143803 Right border of the triangle = A056220: (1, 7, 17, 31, 49, ...). %C A143803 Left border = A058331: (1, 3, 9, 19, 33, 51, ...). %C A143803 Connell-like triangle read by rows: odd rows are in the set 4n-3, evens are in 4n-1. Leftmost term in the next row is the next higher term consistent with the modular rule. %C A143803 Given A056220: (1, 7, 17, 31, 49, 71, ...) as the rightmost diagonal; the triangle is generated starting from the right: (n-th term of A056220, then (n-1) operations of the trajectory (-4), (-4), (-4), ... %C A143803 Row 3 = (9, 13, 17) since beginning with A056220(3) = 17 as rightmost term, we perform two operations of (-4), -(4)j. %F A143803 a(n) = 2*A001614(n) - 1, where A001614 = the Connell numbers. %e A143803 First few rows of the triangle = %e A143803 1; %e A143803 3, 7; %e A143803 9, 13, 17; %e A143803 19, 23, 27, 31; %e A143803 33, 37, 41, 45, 49; %e A143803 51, 55, 59, 63, 67, 71; %e A143803 ... %e A143803 Examples: a(5) = 13 = 2*A001614(5) - 1, where 7 = A001614(5). %o A143803 (Python) %o A143803 from math import isqrt %o A143803 def A143803(n): return ((m:=n<<1)-(k:=isqrt(m))-int(m>=k*(k+1)+1)<<1)-1 # _Chai Wah Wu_, Aug 01 2022 %Y A143803 Cf. A001614, A059722, A056220, A058331. %K A143803 nonn,tabl %O A143803 1,2 %A A143803 _Gary W. Adamson_, Sep 01 2008