A143809 Eigentriangle of the Mobius transform, (A054525).
1, -1, 1, -1, 0, 0, 0, -1, 0, -1, -1, 0, 0, 0, -2, 1, -1, 0, 0, 0, -3, -1, 0, 0, 0, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, -3, 1, -1, 0, 0, 2, 0, 0, 0, 0, -3, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 1, 0, 3, 0, 0, 0, 0, 0, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, -1, 0, 0, 0
Offset: 1
Examples
First few rows of the triangle: 1; -1, 1; -1, 0, 0; 0, -1, 0, -1; -1, 0, 0, 0, -2; 1, -1, 0, 0, 0, -3; -1, 0, 0, 0, 0, 0, -3; 0, 0, 0, 1, 0, 0, 0, -4; 0, 0, 0, 0, 0, 0, 0, 0, -3; 1, -1, 0, 0, 2, 0, 0, 0, 0, -3; ... Row 6 = (1, -1, 0, 0, 0, -3) = termwise product of row 6 of the Mobius transform (1, -1, -1, 0, 0, 1) and the first 6 terms of A007554, (the eigensequence of the Mobius transform): (1, 1, 0, -1, -2, -3).
Comments