cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143866 Eigentriangle of A027293.

This page as a plain text file.
%I A143866 #14 May 09 2021 10:02:46
%S A143866 1,1,1,2,1,2,3,2,2,5,5,3,4,5,12,7,5,6,10,12,29,11,7,10,15,24,29,69,15,
%T A143866 11,14,25,36,58,69,165,22,15,22,35,60,87,138,165,393,937,42,30,44,75,
%U A143866 132,203,345,495,786,937,2233,56,42,60,110,180,319,483,825,1179,1874,2233,5322
%N A143866 Eigentriangle of A027293.
%C A143866 Left border = partition numbers, A000041 starting (1, 1, 2, 3, 5, 7, ...). Right border = INVERT transform of partition numbers starting (1, 1, 2, 5, 12, ...); with row sums the same sequence but starting (1, 2, 5, 12, ...). Sum of n-th row terms = rightmost term of next row.
%C A143866 For another definition of L-eigen-matrix of A027293 see A343234. - _Wolfdieter Lang_, Apr 16 2021
%F A143866 Triangle read by rows, A027293 * (A067687 * 0^(n-k)); 1 <= k <= n. (A067687 * 0^(n-k)) = an infinite lower triangular matrix with the INVERT transform of the partition function as the main diagonal: (1, 1, 2, 5, 12, 29, 69, 165, ...); and the rest zeros. Triangle A027293 = n terms of "partition numbers decrescendo"; by rows = termwise product of n terms of partition decrescendo and n terms of A027293: (1, 1, 2, 5, 12, 29, 69, 165, ...).
%e A143866 The triangle begins:
%e A143866 n \ k    1  2  3  4   5   6   7   8   9  10   11 ...
%e A143866 -------------------------------------------
%e A143866 1:       1
%e A143866 2:       1  1
%e A143866 3:       2  1  2
%e A143866 4:       3  2  2  5
%e A143866 5:       5  3  4  5  12
%e A143866 6:       7  5  6 10  12  29
%e A143866 7:      11  7 10 15  24  29  69
%e A143866 8:      15 11 14 25  36  58  69 165
%e A143866 9:      22 15 22 35  60  87 138 165 393
%e A143866 10:     30 22 30 55  84 145 207 330 393 937
%e A143866 11:     42 30 44 75 132 203 345 495 786 937 2233
%e A143866 ... reformatted and extended by _Wolfdieter Lang_, May 02 2021
%e A143866 Row 4 = (3, 2, 2, 5) = termwise product of (3, 2, 1, 1) and (1, 1, 2, 5) = (3*1, 2*1, 1*2, 1*5).
%Y A143866 Cf. A027293, A067687, A000041, A343234.
%K A143866 nonn,easy,tabl
%O A143866 1,4
%A A143866 _Gary W. Adamson_, Sep 04 2008