cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143929 Eigentriangle by rows, termwise products of the natural numbers decrescendo and the bisected Fibonacci series.

This page as a plain text file.
%I A143929 #22 Feb 01 2025 08:41:37
%S A143929 1,2,1,3,2,3,4,3,6,8,5,4,9,16,21,6,5,12,24,42,55,7,6,15,32,63,110,144,
%T A143929 8,7,18,40,84,165,288,377,9,8,21,48,105,220,432,754,987,10,9,24,56,
%U A143929 126,275,576,1131,1974,2584
%N A143929 Eigentriangle by rows, termwise products of the natural numbers decrescendo and the bisected Fibonacci series.
%C A143929 Row sums = even-indexed Fibonacci terms A001906.
%C A143929 Sum of n-th row terms = rightmost term of next row.
%F A143929 Given A004736: (1; 2,1; 3,2,1; 4,3,2,1; ...), we apply the termwise products of the sequence {A088305(n-1)}_{n>=1} starting (1, 1, 3, 8, 21, ...).
%F A143929 From _Wolfdieter Lang_, Jan 07 2021: (Start)
%F A143929 T(n, m) = 0 if n < m; T(n, 1) = n, for n >= 1, and T(n, m) = F(2*(m-1))*(n-m+1) for n >= m >= 2, with F = A000045 (Fibonacci).
%F A143929 G.f. column m: G(1, x) = x/(1-x)^2, G(m, x) = F(2*(m-1))*x^m/(1-x)^2, for m >= 2. (End)
%F A143929 With offset 0: g.f. of row polynomials R(n, x) := Sum_{m=0..n} t(n, m)*x^m, that is, g.f. of triangle t(n,m) = T(n+1, m+1):
%F A143929 G(z, x) = (1 - x*z)^2 / ((1 - z)^2*(1 - 3*x*z + (x*z)^2)). - _Wolfdieter Lang_, Apr 09 2021
%e A143929 First rows of the triangle T(n, m), n >= 1, m = 1..n:
%e A143929   1;
%e A143929   2, 1;
%e A143929   3, 2,  3;
%e A143929   4, 3,  6,  8;
%e A143929   5, 4,  9, 16,  21;
%e A143929   6, 5, 12, 24,  42,  55;
%e A143929   7, 6, 15, 32,  63, 110, 144;
%e A143929   8, 7, 18, 40,  84, 165, 288, 377;
%e A143929   9, 8, 21, 48, 105, 220, 432, 754, 987;
%e A143929   ...
%e A143929 Example: row 4 = (4, 3, 6, 8) = termwise product of (4, 3, 2, 1) and (1, 1, 3, 8).
%Y A143929 Cf. A000045, A001906, A004736, A088305.
%K A143929 nonn,easy,tabl
%O A143929 1,2
%A A143929 _Gary W. Adamson_, Sep 05 2008