A143936 Subsequence of A050791, "Fermat near misses", generated by iteration of a linear form derived from Ramanujan's parametric formula for equal sums of two pairs of cubes.
5262, 2262756, 972979926, 418379105532, 179902042398942, 77357459852439636
Offset: 1
Keywords
Examples
1 + 5262^3 = 4528^3 + 3753^3 = 145697644729 1 + 2262756^3 = 1947250^3 + 1613673^3 = 11585457155467377217 1 + 972979926^3 = 837313192^3 + 693875529^3 = 921110304262410135315034777
References
- Charles Edward Sandifer, The Early Mathematics of Leonhard Euler, 2007, pp. 102-103.
Links
- Wolfram Mathworld, Diophantine Equation 3rd Powers
Programs
-
Other
/* File: form.bc Usage: bc form.bc ( In UNIX shell, e.g. bash on Cygwin ) */ define a(x){ return( 321*x^2 + 216*x + 36 ); } define b(x){ return( sqrt(a(x)) ); } define n(z){ auto a,x; x=3; a = 215*z+12*b(z)+72 ; a;b(a); return(v(a)); } define v(z){ auto a,b,x,y,i,j,k,l; a = z; b = ( a + b(a) )/2; a = -a; x=3; y = 1-a*x; i=a*x+y; j=b+x^2*y; k=b*x+y; l=a+x^2*y; -a; b; i;j;k;l; i^3+j^3; k^3+l^3; return ( -a ); } z=144; v(z) ; z=n(z); z=n(z); z=n(z); /* ... etc. */
Formula
In Ramanujan's parametric formula:
(a*x+y)^3 + (b+x^2*y)^3 = (b*x+y)^3 + (a+x^2*y)^3
with
a^2 + a*b + b^2 = x*y^2,
we set x=3, ax+y=1 and obtain a quadratic equation for b in terms of a
( Since 'a' is always negative we write it explicitly as '-a' and solve for positive 'a' )
The surd of the quadratic formula then becomes:
sqrt(321*a^2 + 216*a + 36)
and we require that this be an integer. After finding an initial value of 'a' which satisfies this condition by inspection of the sequence A050791, we use Euler's method to find the bilinear recursion: ( with s_i == sqrt(321*a_i^2 + 216*a_i + 36) )
a_i+1 = 215*a_i + 12*s_i + 72
s_i+1 = 215*s_i + 3852*a_i + 1296
and these yield the values of x,y and z from Ramanujan's formula.
Comments