A143940 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in a linear chain of n triangles (i.e., joined like VVV..VV; here V is a triangle!), 1 <= k <= n.
3, 6, 4, 9, 8, 4, 12, 12, 8, 4, 15, 16, 12, 8, 4, 18, 20, 16, 12, 8, 4, 21, 24, 20, 16, 12, 8, 4, 24, 28, 24, 20, 16, 12, 8, 4, 27, 32, 28, 24, 20, 16, 12, 8, 4, 30, 36, 32, 28, 24, 20, 16, 12, 8, 4, 33, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4, 36, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4
Offset: 1
Examples
T(2,1)=6 because the chain of 2 triangles has 6 edges. Triangle starts: 3; 6, 4; 9, 8, 4; 12, 12, 8, 4; 15, 16, 12, 8, 4;
Links
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
Programs
-
Maple
T:=proc(n,k) if n < k then 0 elif k = 1 then 3*n else 4*n-4*k+4 end if end proc: for n to 12 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
Formula
T(n,1)=3n; T(n,k) = 4(n-k+1) for k>1.
G.f. = G(q,z) = qz/(3+qz)/((1-qz)*(1-z)^2).
Comments