This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143946 #35 Dec 19 2023 18:51:54 %S A143946 1,1,0,1,2,0,2,1,0,1,6,0,6,3,2,3,2,1,0,1,24,0,24,12,8,18,8,10,3,6,3,2, %T A143946 1,0,1,120,0,120,60,40,90,64,50,39,42,23,28,13,10,8,6,3,2,1,0,1,720,0, %U A143946 720,360,240,540,384,420,234,372,198,208,168,124,98,75,60,35,34,13,16,8,6,3 %N A143946 Triangle read by rows: T(n,k) is the number of permutations of [n] for which the sum of the positions of the left-to-right maxima is k (1 <= k <= n(n+1)/2). %C A143946 Row n contains n*(n+1)/2 = A000217(n) entries. %C A143946 Sum of entries in row n = n! = A000142(n). %H A143946 Alois P. Heinz, <a href="/A143946/b143946.txt">Rows n = 1..50, flattened</a> %H A143946 I. Kortchemski, <a href="http://arxiv.org/abs/0804.0446">Asymptotic behavior of permutation records</a>, arXiv: 0804.0446 [math.CO], 2008-2009. %F A143946 T(n,1) = T(n,3) = (n-1)! for n>=2. %F A143946 Sum_{k=1..n*(n+1)/2} k * T(n,k) = n! * n = A001563(n). %F A143946 Generating polynomial of row n is t(t^2+1)(t^3+2)...(t^n+n-1). %F A143946 Sum_{k=1..n*(n+1)/2} (n*(n+1)/2-k) * T(n,k) = A001804(n). - _Alois P. Heinz_, Dec 19 2023 %e A143946 T(4,6)=3 because we have 1243, 1342 and 2341 with left-to-right maxima at positions 1,2,3. %e A143946 Triangle starts: %e A143946 1; %e A143946 1, 0, 1; %e A143946 2, 0, 2, 1, 0, 1; %e A143946 6, 0, 6, 3, 2, 3, 2, 1, 0, 1; %e A143946 24, 0, 24, 12, 8, 18, 8, 10, 3, 6, 3, 2, 1, 0, 1; %e A143946 ... %p A143946 P:=proc(n) options operator, arrow: sort(expand(product(t^j+j-1,j=1..n))) end proc: for n to 7 do seq(coeff(P(n),t,i),i=1..(1/2)*n*(n+1)) end do; # yields sequence in triangular form %p A143946 # second Maple program: %p A143946 b:= proc(n) option remember; `if`(n=0, 1, %p A143946 expand(b(n-1)*(x^n+n-1))) %p A143946 end: %p A143946 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): %p A143946 seq(T(n), n=1..7); # _Alois P. Heinz_, Aug 05 2020 %t A143946 row[n_] := CoefficientList[Product[t^k + k - 1, {k, 1, n}], t] // Rest; %t A143946 Array[row, 7] // Flatten (* _Jean-François Alcover_, Nov 28 2017 *) %Y A143946 Cf. A000142, A000217, A001563, A001804, A143947. %Y A143946 T(n,n) gives A368246. %K A143946 nonn,tabf %O A143946 1,5 %A A143946 _Emeric Deutsch_, Sep 21 2008