This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143947 #24 Jan 05 2024 17:59:48 %S A143947 1,0,1,1,0,0,2,1,2,1,0,0,0,6,2,3,7,2,3,1,0,0,0,0,24,6,8,14,27,10,9,14, %T A143947 3,4,1,0,0,0,0,0,120,24,30,46,68,142,41,53,50,73,23,17,23,4,5,1,0,0,0, %U A143947 0,0,0,720,120,144,204,270,436,834,260,256,351,310,463,148,145,118,148,40 %N A143947 Triangle read by rows: T(n,k) is the number of permutations of [n] for which the sum of the positions of the right-to-left minima is k (1 <= k <= n*(n+1)/2). %C A143947 Row n contains n(n+1)/2 entries, first n-1 of which are 0. Sum of entries in row n = n! = A000142(n). %C A143947 Sum of entries in column n = A143948(n). %C A143947 T(n,n) = (n-1)!. %C A143947 Sum_{k=n..n(n+1)/2} k*T(n,k) = A001705(n). %H A143947 Alois P. Heinz, <a href="/A143947/b143947.txt">Rows n = 1..50, flattened</a> %F A143947 Generating polynomial of row n is (n-1+t)(n-2+t^2)(n-3+t^3)...(1+t^(n-1))t^n. %e A143947 T(4,6) = 3 because we have 4132, 3142 and 2143 with right-to-left minima at positions 2 and 4. %e A143947 Triangle starts: %e A143947 1; %e A143947 0, 1, 1; %e A143947 0, 0, 2, 1, 2, 1; %e A143947 0, 0, 0, 6, 2, 3, 7, 2, 3, 1; %e A143947 0, 0, 0, 0, 24, 6, 8, 14, 27, 10, 9, 14, 3, 4, 1; %e A143947 ... %p A143947 P:=proc(n) options operator, arrow: sort(expand(product(t^(n-j)+j,j=0..n-1))) end proc: for n to 7 do seq(coeff(P(n),t,i),i=1..(1/2)*n*(n+1)) end do; # yields sequence in triangular form %t A143947 T[n_] := CoefficientList[Product[n-k+t^k, {k, 1, n-1}] t^(n-1), t]; %t A143947 Array[T, 10] // Flatten (* _Jean-François Alcover_, Feb 14 2021 *) %Y A143947 Cf. A000142, A000217, A001705, A143946, A143948. %Y A143947 T(n,2n) gives A368678. %Y A143947 Row maxima give A367594. %K A143947 nonn,tabf %O A143947 1,7 %A A143947 _Emeric Deutsch_, Sep 22 2008