cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143949 Triangle read by rows: T(n,k) is the number of n-Dyck paths containing k odd-length descents to ground level (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 4, 4, 5, 0, 1, 10, 17, 7, 7, 0, 1, 32, 46, 34, 10, 9, 0, 1, 100, 155, 94, 55, 13, 11, 0, 1, 329, 502, 335, 154, 80, 16, 13, 0, 1, 1101, 1701, 1110, 580, 226, 109, 19, 15, 0, 1, 3761, 5820, 3865, 1960, 898, 310, 142, 22, 17, 0, 1, 13035, 20251
Offset: 0

Views

Author

Emeric Deutsch, Oct 05 2008

Keywords

Comments

Row sums are the Catalan numbers (A000108).
T(0,n)=A033297(n).
Sum(k*T(n,k),k=0..n)=A000957(n+2) (the Fine numbers).
The case of even-length descents to ground level is considered in A111301.

Examples

			T(4,2) = 5 because we have U(D)U(D)UUDD, U(D)UUDDU(D), U(D)UUU(DDD), UUDDU(D)U(D) and UUU(DDD)U(D) (the odd-length descents to ground level are shown between parentheses).
Triangle starts:
1;
0,1;
1,0,1;
1,3,0,1;
4,4,5,0,1;
10,17,7,7,0,1;
		

Crossrefs

Programs

  • Maple
    C:=((1-sqrt(1-4*z))*1/2)/z: G:=1/(1-z*(t+z*C)/(1-z^2*C^2)): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(expand(coeff(Gser,z,n))) end do: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) end do; # yields sequence in triangular form

Formula

G.f.: G(s,z) = 1/[1-z(t+zC)/(1-z^2*C^2)], where C = [1-sqrt(1-4z)]/(2z) is the Catalan function.
The trivariate g.f. H(t,s,z), where t (s) marks odd-length (even-length) descents to ground level and z marks semilength, is H=1/[1-z(t+szC)/(1-z^2*C^2)], where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.