cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143954 Number of peaks in the peak plateaux of all Dyck paths of semilength n.

This page as a plain text file.
%I A143954 #24 Mar 23 2017 04:36:49
%S A143954 0,0,1,5,19,68,243,880,3233,12021,45119,170595,648787,2479057,9509627,
%T A143954 36598497,141246127,546433952,2118424887,8227983472,32010173957,
%U A143954 124715628852,486550020967,1900433894942,7431033132717,29085434212042
%N A143954 Number of peaks in the peak plateaux of all Dyck paths of semilength n.
%C A143954 A peak plateau is a run of consecutive peaks that is preceded by an upstep and followed by a down step; a peak consists of an upstep followed by a downstep.
%H A143954 G. C. Greubel, <a href="/A143954/b143954.txt">Table of n, a(n) for n = 0..1000</a>
%F A143954 a(n) = Sum_{k=0..n-1} k*A143953(n,k).
%F A143954 G.f.: z^2*C/[(1-z)^2*sqrt(1-4z)], where C = [1-sqrt(1-4z)]/(2z) is the Catalan function.
%F A143954 a(n) ~ 2^(2*n+1)/(9*sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 20 2014
%F A143954 a(n) = Sum_{k=1..n-1} A079309(k). - _Doug Bell_, Jun 23 2015
%F A143954 Conjecture: (-n+1)*a(n) +2*(3*n-4)*a(n-1) +(-9*n+13)*a(n-2) +2*(2*n-3)*a(n-3)=0. - _R. J. Mathar_, Jun 16 2016
%e A143954 a(3)=5 because in the peak plateaux of the Dyck paths UDUDUD, UD(UUDD), (UUDD)UD, (UUDUDD) and U(UUDD)D, shown between parentheses, we have 0 + 1 + 1 + 2 + 1 = 5 peaks.
%p A143954 C:=((1-sqrt(1-4*z))*1/2)/z: G:=z^2*C/((1-z)^2*sqrt(1-4*z)): Gser:=series(G,z= 0,30): seq(coeff(Gser,z,n),n=0..25);
%t A143954 CoefficientList[Series[x^2*((1-Sqrt[1-4*x])*1/2)/x/((1-x)^2*Sqrt[1-4*x]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o A143954 (PARI) x='x+O('x^50); concat([0,0], Vec(x*(1-sqrt(1-4*x))/(2*(1-x)^2*sqrt(1-4*x)))) \\ _G. C. Greubel_, Mar 22 2017
%Y A143954 Cf. A143952, A143953, A079309.
%K A143954 nonn
%O A143954 0,4
%A A143954 _Emeric Deutsch_, Oct 10 2008