cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143955 Sum of the altitudes of the leftmost valleys of all Dyck paths of semilength n (if path has no valley, then this altitude is taken to be 0).

This page as a plain text file.
%I A143955 #24 May 16 2022 04:37:21
%S A143955 0,0,0,1,6,26,101,376,1377,5017,18277,66727,244377,898129,3312554,
%T A143955 12260129,45526754,169588754,633580634,2373550184,8914719134,
%U A143955 33562602134,126640791884,478848661898,1814142235028,6885560250148
%N A143955 Sum of the altitudes of the leftmost valleys of all Dyck paths of semilength n (if path has no valley, then this altitude is taken to be 0).
%C A143955 The positive terms form the partial sums of A000344.
%H A143955 Vincenzo Librandi, <a href="/A143955/b143955.txt">Table of n, a(n) for n = 0..200</a>
%F A143955 a(n) = Sum_{k>=0} k*A097607(n,k).
%F A143955 G.f.: z^3*C^5/(1-z), where C=(1-sqrt(1-4*z))/(2*z) is the generating function of the Catalan numbers (A000108).
%F A143955 Conjecture: (n+2)*a(n) -4*(2*n+1)*a(n-1) +2*(10*n-9)*a(n-2) +17*(2-n)*a(n-3) +2*(2*n-7)*a(n-4)=0. - _R. J. Mathar_, Jul 24 2012
%F A143955 a(n) ~ 5*4^n/(3*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Mar 21 2014
%F A143955 a(n) = 5*Sum_{k=2..n-1}(binomial(2*k,k-2)/(k+3)). - _Vladimir Kruchinin_, Mar 15 2016
%e A143955 a(4)=6 because the Dyck paths of semilength 4 with leftmost valley at a positive altitude are UUDUDDUD, UUDUDUDD, UUDUUDDD, UUUDDUDD and UUUDUDDD, where U=(1,1) and D=(1,-1); these altitudes are 1, 1, 1, 1 and 2, respectively.
%p A143955 C:=((1-sqrt(1-4*z))*1/2)/z: G:=z^3*C^5/(1-z): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..27);
%t A143955 CoefficientList[Series[x^3 ((1 - (1 - 4 x)^(1/2))/(2 x))^5/(1 - x), {x, 0, 40}], x] (* _Vaclav Kotesovec_, Mar 21 2014 *)
%o A143955 (Maxima)
%o A143955 a(n):=5*sum(binomial(2*k,k-2)/(k+3),k,2,n-1); /* _Vladimir Kruchinin_, Mar 15 2016 */
%o A143955 (Python)
%o A143955 from functools import cache
%o A143955 @cache
%o A143955 def B(n, k):
%o A143955     if n <= 0 or k <= 0: return 0
%o A143955     if n == k: return 1
%o A143955     return B(n - 1, k) + B(n, k - 1)
%o A143955 def A143955(k):
%o A143955     return B(k + 3, k - 2)
%o A143955 print([A143955(n) for n in range(26)]) # _Peter Luschny_, May 15 2022
%Y A143955 Cf. A000108, A000344, A097607, A323224.
%K A143955 nonn
%O A143955 0,5
%A A143955 _Emeric Deutsch_, Oct 14 2008