cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143965 Factorial eigentriangle: A119502 * (A051295 *0^(n-k)); 0 <= k <= n.

This page as a plain text file.
%I A143965 #22 Jul 24 2024 09:48:18
%S A143965 1,1,1,2,1,2,6,2,2,5,24,6,4,5,15,120,24,12,10,15,54,720,120,48,30,30,
%T A143965 54,235,5040,720,240,120,90,108,235,1237,40320,5040,1440,600,360,324,
%U A143965 470,1237,7790
%N A143965 Factorial eigentriangle: A119502 * (A051295 *0^(n-k)); 0 <= k <= n.
%C A143965 Triangle read by rows, termwise product of (n-k)! (i.e factorial decrescendo,
%C A143965 A119502) and the INVERT transform of the factorials (A051295) prefaced by a 1:
%C A143965 (1, 1, 2, 5, 15, 54, 235, 1237, 7790, ...). A119502 = (1; 1,1; 2,1,1; 6,2,1,1; 24,6,2,1,1; ...).
%C A143965 The operation (A051295 * 0^(n-k)) with A051295 prefaced with a 1 = an infinite lower triangular matrix with (1, 1, 2, 5, 15, 54, 235, ...) in the main diagonal and the rest zeros.
%C A143965 Row sums = the INVERT transform of the factorials, A051295: (1, 2, 5, 15, 54, 235, 1237, ...).
%C A143965 Right border shifts A051295: (1, 1, 2, 5, 15, ...).
%C A143965 Sum of n-th row terms = rightmost term of next row; e.g. ( 6 + 2 + 2 + 5) = 15.
%C A143965 With offset 1 for n and k, T(n,k) counts permutations of [n] that contain a 132 pattern only as part of a 4132 pattern by position k of largest entry n. Example: T(5,3)=4 counts 34512, 34521, 43512, 43521. - _David Callan_, Nov 21 2011
%C A143965 From _Gary W. Adamson_, Jul 21 2016: (Start)
%C A143965 A production matrix M for the reversal of the triangle is follows: M =
%C A143965   1, 1, 0, 0, 0, 0, ...
%C A143965   1, 0, 2, 0, 0, 0, ...
%C A143965   1, 0, 0, 3, 0, 0, ...
%C A143965   1, 0, 0, 0, 4, 0, ...
%C A143965   1, 0, 0, 0, 0, 5, ...
%C A143965 ... Take powers of M, extracting the top row, getting: (1), (1, 1), (2, 1, 2), (5, 2, 2, 6), ... (End)
%F A143965 Factorial eigentriangle: A119502 * (A051295 *0^(n-k)); 0 <= k <= n.
%F A143965 The operation uses A119502 prefaced with a 1 = (1, 1, 2, 5, 15, 54, 235, ...); i.e., the right border of the triangle.
%e A143965 First few rows of the triangle:
%e A143965      1;
%e A143965      1,   1;
%e A143965      2,   1,   2;
%e A143965      6,   2,   2,   5;
%e A143965     24,   6,   4,   5, 15;
%e A143965    120,  24,  12,  10, 15,  54;
%e A143965    720, 120,  48,  30, 30,  54, 235;
%e A143965   5040, 720, 240, 120, 90, 108, 235, 1737;
%e A143965   ...
%e A143965 Example: Row 3 = (6, 2, 2, 5) = termwise products of row 3 terms of triangle A119502 (6, 2, 1, 1) and the first four terms of (1, 1, 2, 5, ...) = (6*1, 2*1, 1*2, 1*5).
%Y A143965 Cf. A000142, A051295, A119502.
%K A143965 nonn,tabl
%O A143965 0,4
%A A143965 _Gary W. Adamson_, Sep 06 2008